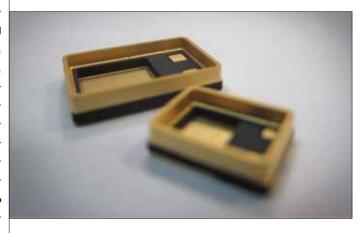
КОРПУСА ДЛЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ МЕТАЛЛОСТЕКЛЯННЫЕ И МЕТАЛЛОКЕРАМИЧЕСКИЕ

Корпуса интегральных схем и полупроводниковых приборов защищают их элементы и компоненты от влияния внешней среды, обеспечивают необходимые электрические связи между кристаллом и выводами, служат теплоотводом. Именно корпус в значительной степени определяет надежность микросхемы и степень интеграции монтируемой в корпус схемы, которая во многом зависит от числа ее выводов. Наряду с общепринятой отечественной классификацией корпусов, регламентируемой ГОСТом 17467 «Микросхемы интегральные. Основные размеры», корпуса можно подразделить по материалу, из которого они изготовлены. Это — металлостеклянные корпуса, в основе конструкции которых лежит металлическое основание с изоляцией выводов стеклом, и металлокерамические корпуса с керамическим основанием, в котором электрические связи внутри корпуса обеспечивают проводники из воженной металлической пасты. Последний класс корпусов позволяет отводить большую мощность.

МЕТАЛЛОСТЕКЛЯННЫЕ КОРПУСА


Стекла — неорганические аморфные вещества — представляют собой сложные системы различных окислов. Кроме стеклообразующих окислов, каждый из которых способен сам по себе в чистом виде образовывать стекло (SiO_2 , B_2O_3), в состав стекол входят и другие окислы: щелочные (Na_2O , K_2O), щелочноземельные (CaO, BaO), а также окислы металлов (PbO, Al_2O_3) и др. Основу большинства стекол составляет SiO_2 . Такие стекла называются силикатными и широко используются в металлостеклянных корпусах в качестве изоляторов (табл.1, 2). Следует учитывать, что помимо высоких диэлектрических характеристик стекла, применяемые в качестве изолятора в металлостеклянных корпусах, должны иметь согласованный с материалом, из которого изготовлены выводы и фланец, температурный коэффициент линейного рас-

A.Максимов maximov1982@mail.ru

ширения (ТКЛР) (табл.3). В противном случае при изменении температуры в стекле могут появиться трещины, что приведет к нарушению герметичности в месте ввода выводов в основание корпуса. По значению коэффициента линейного расширения и, следовательно, по возможности спаивания с соответствующими металлами электровакуумные стекла разделяют на следующие основные группы: кварцевая (ТКЛР = $6-10\cdot10^{-7}$ град $^{-1}$), вольфрамовая ($37-40\cdot10^{-7}$ град $^{-1}$), молибденовая ($47-50\cdot10^{-7}$ град $^{-1}$), титановая ($72-75\cdot10^{-7}$ град $^{-1}$), платинитовая ($84-92\cdot10^{-7}$ град $^{-1}$) и железная ($110-120\cdot10^{-7}$ град $^{-1}$). Учитывая то, что в качестве материала выводов и фланцев металлостеклянных корпусов обычно используют ковар, ТКЛР которого составляет $45-52\cdot10^{-7}$ град $^{-1}$, наиболее подходящая для металлостеклянных корпусов группа стекол — молибденовая.

МЕТАЛЛОКЕРАМИЧЕСКИЕ КОРПУСА ЗАО «ТЕСТПРИБОР»

С 2010 года компания ЗАО «ТЕСТПРИБОР» проводит разработку и осваивает корпуса для приборов специального назначения. Компанией уже созданы и серийно освоены в производстве 23 типа металлокерамических корпусов для микросхем и 14 металлокерамических и металлостеклянных корпусов для полупроводниковых приборов как для поверхностного монтажа (SMD), так и штыревого типа. Наибольший интерес представляют серия металлокерамических корпусов SMD (рис.1) и серия металлостеклянных корпусов TO (рис.2).

Рис. 1. Корпуса серии SMD

Таблица 1. Химический состав электровакуумных стекол молибденовой группы, выпускаемых отечественной промышленностью

Marina		Массово	ое содержани	B 0/			
Марка стекла	SiO ₂	B ₂ O ₃	Al ₂ O ₃	Na ₂ O	K ₂ 0	CaO	Другие оксиды, %
C47-1	68,5	17,2	2,5	6,8	_	_	ZnO, 5,0
C48-1	66,5	23,0	3,0	3,7	3,8	_	-
C48-2	66,3	20,9	3,5	3,0	5,0	-	Li ₂ O, 0,2
C48-3	54,0	_	18,5	_	-	13,5	ZnO, 6,0; BaO; 8,0
C49-1	67,5	20,3	3,5	8,7	-	-	-
C49-2	68,2	19,0	3,5	4,8	4,5	-	-
C50-1	25,0	30,0	20,0	_	-	-	BaO, 25,0
C50-2	7,0	35,0	23,0	-	-	6,3	PbO, 14,5; MgO, 14,2
C52-1	68,7	19,0	3,5	4,4	4,4	-	-
C52-2	63,3	18,0	8,0	3,4	3,6	-	Li ₂ O, 0,7; BaO, 3,0

Таблица 2. Химический состав и значение ТКЛР стекол молибденовой группы, используемых зарубежными фирмами

Марка	(amaya)		Массово	Другие оксиды, %				
стекла	Фирма изготовитель (страна)	SiO ₂	$B_{2}O_{3}$	Al ₂ O ₃	Na ₂ O	K ₂ 0	CaO	(ТКЛР, 10 ⁻⁷ /°С)
7050	Corning Glass (США)	67,3	24,6	1,7	4,6	1,0	_	MgO, 0,2(46)
750.01	«Сонрель» (Франция)	66,3	24,7	1,6	6,8	-	-	PbO, 0,4(43,6)
1147	(Германия)	63,4	12,0	4,0	7,5	_	_	ZnO, 12,0(50)
634h	Osram, (Германия)	74,9	8,1	5,8	6,0	-	1,3	BaO, 3,3(49)
МоКа	(Чехия)	75,0	10,0	5,0	7,0	1,5	1,5	(50)

Таблица 3. Свойства электровакуумных стекол молибденовой группы

Manua	tg δ , 10 ⁻⁴ в зависимости от температуры (°С)							€ в зависимости от температуры (°C)					
Марка стекла	при 10 ⁶ Гц			при 10 ¹⁰ Гц			при 10 ⁶ Гц			при 10 ¹⁰ Гц			тклР,
	20	200	300	20	200	300	20	200	300	20	200	300	10 ⁻⁷ /°C
C47-1	45	250	800	90	100	112	5,6	6,0	6,6	5,0	5,15	5,34	47,0
C48-1	22	66	270	65	74	83	5,4	5,5	5,8	4,9	4,95	5,0	48,0
C48-2	-	_	_	_	_	_	_	_	_	_	_	_	48,0
C48-3	12	17,5	28	72	72	73	6,95	7,08	7,18	6,78	6,79	6,84	48,0
C49-1	-	_	_	_	-	_	-	_	_	_	_	_	49,0
C49-2	30	100	310	90	108	123	5,7	5,9	5,9	5,2	5,25	5,38	49,0
C50-1	-	8	12	30	30	30	6,0	6,1	6,1	5,9	5,48	6,0	50,0
C50-2	-	-	-	-	-	-	-	-	-	-	-	-	50,0
C51-1	56	_	_	_	-	_	-	_	-	_	-	_	51,0
C51-2	40	-	-	86	-	-	7,5	-	-	7,0	-	-	51,0
C52-1	-	_	-	-	-	-	-	-	-	_	-	-	52,0
C52-2	-	_	-	-	-	-	-	-	-	_	-	_	52,0

Таблица 4. Основные характеристики SMD-корпусов

	Тип корпуса (габариты, мм)								
Параметр	SMD-0,2 (8,05×5,50)	SMD-0,5 (10,16×7,52)	SMD-1 (15,88×11,43)	SMD-2 (17,55×13,40)	SMD-3 (30,90×19,80)	MBSS0507-N3 (7,00×5,00)			
Максимальная высота корпуса, мм	2,8	_	_	3,35	3,81	2,13			
Размер монтажного окна, мм	3,00×3,28	4,20×5,1-0	8,40×8,2-0	9,94×9,74	20,17×16,11	5,40×3,00			
Глубина монтажного колодца, мм	-	0,5	1,0	_	_	-			
Расстояние от монтажной площадки до внутренней поверхности крышки, мм	-	2,0	2,58	2,6	3,1	-			
Размер контактных площадок, мм	1,24×0,79	0,95×1,00	1,70×1,90	2,20×2,20	3,60×3,50	1,00×3,00			
Размер внешних выводных площадок, мм	2,07×2,07	3,05×2,42	4,00×3,55	3,74×3,74	5,00×5,15	5,00×3,70			
Сопротивление изоляции, мин., Ом	10 ⁹								
Покрытие основания корпуса	Н23л.3								
Метод герметизации	Шовно-роликовая сварка								
Масса корпуса, г	-	0,8	2,1	_	_	-			
Диапазон рабочих температур, °С	-65175								

Таблица 5. Основные характеристики ТО-корпусов

	Тип корпуса									
Параметр	TO-259	TO-258	TO-257	TO-254	8-выводной ТО-254	HTO 259A	TO-267			
Шаг выводов, мм	5,08	4,9	2	3,81	2,54	7,62	4,8			
Габариты тела корпуса, мм	13,70×17,50	13,70×17,50	10,7×10,7	13,70×13,70	13,70×13,70	22,00×18,50	17,7×13,7			
Размер монтажного окна корпуса, мм	11,05×14,95	15,40×11,70	8,0×7,5	9,25×9,25	11,16	16,00×16,66	11,05×15,00			
Максимальная высота корпуса, мм	6,7	6,7	4,95	6,55	6,5	8,6	6,6			
Покрытие	Золото Никель	Золото	Никель	Золото Никель	Золото Никель	Никель	Золото			
Число выводов	3	3	3	3	8	2	5			
Диаметр выводов, мм	1,47	1,55	0,82	0,95	0,8		0,75			
Сопротивление изоляции, мин., Ом	10 ⁹									
Метод герметизации	Шовно-роликовая сварка									
Диапазон рабочих температур, ⁰С	-65175									

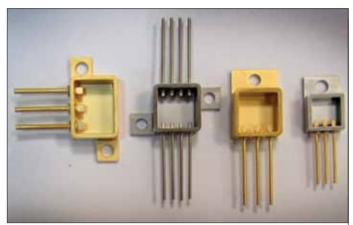


Рис. 2. Металлостеклянные корпуса

Для полупроводниковых приборов разработаны и освоены в серийном производстве серии металлокерамических корпусов SMD-3, SMD-2, SMD-1, SMD-0,5, SMD-0,2. Корпуса изготавливаются по технологии высокотемпературных керамических модулей с использованием алюмооксидной (высокоглиноземистой корундовой) керамики с содержанием оксида алюминия 90—92%. При изготовлении теплоотвода и токопроводящих частей корпуса используется сплав меди и вольфрама, все металлические и металлизированные части основания имеют финишное золотое покрытие. Благодаря этому выполняются повышенные требования по герметичности и температурным характеристикам корпусов (табл.4).

Разработаны и в сентябре 2010 года начаты опытные поставки корпусов серии ТО: ТО-254, ТО-257, ТО-258, ТО-259, НТО-259А, ТО-267. Корпуса этой серии металлические с изолированными стеклом или керамикой выводами. Предназначены для монтажа в отверстия печатной платы. Для увеличения отвода выделяемого прибором тепла в конструкциия корпуса предусмотрена возможность его крепления к радиатору. Материалом для теплоотводов служит сплав меди и вольфрама, что обеспечивает лучшую по сравнению с ана-

логами герметичность и более высокие температуры эксплуатации (табл.5).

Сейчас компания ЗАО «ТЕСТПРИБОР» может разработать и изготовить корпуса практически любого уровня сложности по качеству, соответствующему мировым стандартам. При этом большое внимание уделяется обеспечению полного соответствия создаваемых корпусов требованиям разработчиков ИМС в части конструкции, эксплуатационных характеристик и сроков изготовления.