ТВЕРДОТЕЛЬНЫЕ ЭЛЕКТРОХИМИЧЕСКИЕ СЕНСОРЫ АКТИВНЫХ ГАЗОВ

Эффективный экологический мониторинг возможен, если созданы сенсорные сети, охватывающие большие территории и обеспечивающие непрерывный контроль токсичных газов. Для экологического и санитарного контроля состава газовой среды наиболее перспективны электрохимические датчики, поэтому разработка сенсоров для определения концентрации активных газов в различных средах является весьма актуальной задачей.

лектрохимические сенсоры представляют собой потенциометрические электрохимические ячейки вида: ЭС | X⁺-ТЭ | РЭ, (1)где ЭС – электрод сравнения (RE), для сенсоров CO₂ и H₂S – это натрий-вольфрамовые оксидные бронзы (Na_xWO₃), а для сенсоров H₂ и CO – диоксид свинца (PbO₂), Х⁺-ТЭ – ионная (твердоэлектролитная) мембрана (SE), в качестве которой применяют либо натрийпроводящие твердые электролиты типа NASICON (Na₃Zr₂Si₂PO₁₂) для сенсоров CO₂ и H₂S, либо протонообменные мембраны на основе гетерополисоединений для сенсоров Н₂ и СО; РЭ – рабочий электрод (WE). Для сенсоров водорода и угарного газа применяют как чистую платину, так и платину на углеродных и неуглеродных носителях, для сенсоров сероводорода - сульфид свинца (PbS) и композиты на его основе, для датчиков диоксида углерода - композиты на основе диоксида олова (SnO₂) с добавками оксидов сурьмы.

В качестве контролируемых газов используют либо промышленные реактивы марок ХЧ и ЧДА, либо синтезированные из соответствующих реактивов вещества, чистота которых контролируется рентгенофазовым или химическим анализом.

Устройство газовой системы и измерительной ячейки представлено на рис.1. Электрохимическую ячейку помещали в вентилируемый сосуд с насыщенным раствором бихромата натрия (52% отн.), в котором при помощи гидА.Левченко, к.х.н., Л.Леонова, к.х.н., Ю.Добровольский, к.х.н.

ростатика поддерживали постоянную влажность и через который пропускали все используемые газы. Измерения проводили при комнатной температуре (21±0.3°C). Чтобы исключить протекание токов в системе, ячейку подключали к прибору с входным сопротивлением 10¹¹ Ом (потенциостаты "Элинс PS-7, P-8" и АЦП "Элинс ADCP-4"). Концентрации газов задавались соотношением потоков чистого воздуха, детектируемого газа (H_2 , CO, CO₂, H_2S+N_2) и газа примеси при помощи высокоточных лабораторных регуляторов потока газа "Bronkhost El-flow". При этом получались газовые смеси с содержанием: сероводорода от 0,5 до 300 ppm; водорода - от 0,005 до 5% об.; угарного газа – от 0,005 до 5% об.; диоксида углерода – от 0,1 до 50% об. и примеси до 10% об.

СЕНСОРЫ НА ОСНОВЕ ПРОТОНПРОВОДЯШИХ ТВЕРДЫХ ЭЛЕКТРОЛИТОВ

В качестве электрода сравнения в этих сенсорах использовался диоксид свинца.

Появление потенциала на электроде PbO₂ в твердых протонных электролитах связано с двумя электродными реакциями:

(2)

Рис. 1. Газовая система и измерительная ячейка

 H_2O (H⁺-TЭЛ) ↔ O(PbO₂) + 2H⁺(H⁺-TЭЛ) + 2e (PbO₂), (3) где в скобках указана фаза, в которой находится соответствующая частица, причем H⁺-SE обозначает протонный электролит. Суммарная потенциалопределяющая реакция, таким образом, может быть записана в форме:

$$PbO_2 + 4H^+ + 2e \leftrightarrow Pb^{2+} + 2H_2O.$$
 (4)

При этом парциальный ток обмена для реакции (2) намного меньше, чем для реакции (3), а кислород и водород, присутствующие в газовой фазе, в установлении электродного равновесия не участвуют из-за кинетических затруднений. В соответствии с реакцией (4) величина электродного потенциала равна:

$$\mathsf{E}_{\mathsf{PbO}_2} = \mathsf{E}^{\mathsf{o}}_{\mathsf{PbO}_2} - \frac{2\mathsf{RT}}{\mathsf{F}} \cdot \mathsf{In}[\mathsf{H}^+] + \frac{\mathsf{RT}}{\mathsf{F}} \cdot \mathsf{In}[\mathsf{H}_2\mathsf{O}]$$

где символы в квадратных скобках обозначают активности соответствующих ионов и воды в электролите. Так как ток обмена по свинцу незначителен, можно считать, что после стабилизации потенциал электрода определяется только протонной функцией, т.е. на электроде доминирует равновесие:

$$PbO_{2-x} + xH_2O \leftrightarrow PbO_2 + 2xH^+ + 2e$$
 (5)

и соответственно:

$$\mathsf{E}_{\mathsf{PbO}_2} = \mathsf{E}^{\circ}_{\mathsf{PbO}_2} + \frac{2\mathsf{RT}}{\mathsf{F}} \cdot \mathsf{In}[\mathsf{H}^+] \ .$$

Это свидетельствует о том, что потенциал границы зависит только от концентрации протонов в твердом электролите, а для каждого вещества эта величина постоянная. Таким образом, потенциал этой границы не зависит от состава газовой фазы [1].

Рабочий электрод для сенсоров на базе протонпроводящих электролитов — платина и композиты на ее основе. Этот электрод определяет и основные характеристики сенсоров — скорость реакции, чувствительность и селективность. Следует отметить, что некоторое влияние на данные характеристики оказывает и состав используемой ионной мембраны (твердого электролита).

Сенсоры водорода и угарного газа

Процесс детектирования водорода и угарного газа при помощи электрохимических сенсоров можно разделить на две части: детектирование в инертной атмосфере и детектирование в присутствии кислорода.

На рабочем электроде протекает следующий процесс:

$$H_2 \rightarrow 2H^+ + 2e. \tag{6}$$

Зависимость ЭДС от концентрации H₂ описывается уравнением Нернста:

$$\mathsf{E} = \mathsf{E}_{0} - \frac{\mathsf{RT}}{2\mathsf{F}} \ln[\mathsf{H}_{2}],$$

где R — универсальная газовая постоянная, T — абсолютная температура, F — константа Фарадея. На угарный газ в инертной атмосфере сенсоры не реагируют.

При детектировании водорода в воздухе возникают посторонние процессы, приводящие к отклонению концентрационной зависимости от уравнения Нернста. Такие отклонения часто связывают с участием кислорода в процессах (например, разряд кислорода или окисление водорода на поверхности рабочего электрода):

$$\frac{1}{2}O + 2H^+ + 2e \to H_2O .$$
 (7)

Зависимость ЭДС от концентрации H₂ в таком случае может быть нелинейной и часто описывается следующим уравнением:

$$E = E_0 + k \ln[H_2]$$
,

где k – некоторая константа, подбираемая эмпирически [2].

В случае угарного газа процессы возникают только в присутствии кислорода, так как он необходим для протекания электрохимических реакций:

$$4\mathrm{H}^{+} + \mathrm{O}_{2} + 4\mathrm{e} \leftrightarrow 2\mathrm{H}_{2}\mathrm{O} , \qquad (8)$$

Рис. 2. Релаксационные кривые (а) и концентрационная зависимость (б) сенсора водорода

$$CO + H_2O - 2e \leftrightarrow CO_2 + 2H^+.$$
(9)

При нормальных условиях концентрации всех компонентов, кроме СО, постоянны, соответственно, ЭДС сенсора является функцией концентрации угарного газа:

$$E = E_0 + k \cdot \ln[CO]$$
.

В результате проведенных исследований были найдены наиболее оптимальные материалы для рабочих электродов и ионных мембран, применяемых в сенсорах водорода и угарного газа.

Сенсоры водорода

В сенсоре водорода используется аммониевая соль фосфорно-вольфрамовой кислоты и специально приготовленной губчатой платины. Особенность, делающая прибор перспективным, — безопасность использования при комнатных температурах [1]. Еще одно важное достоинство этого сенсора — отсутствие влияния температуры на концентрационную зависимость ЭДС (рис.2).

Сенсоры угарного газа

При замене материала рабочего электрода с губчатой платины композитным материалом, представляющим собой наноструктурированный диоксид олова, покрытый наночастицами платины, удалось получить сенсор, способный детектировать угарный газ (рис.3) в присутствии водорода.

Рис.3. Релаксационные кривые и концентрационная зависимость сенсора угарного газа

В сенсорах водорода целесообразно применять пленки платины, нанесенные на углеродный носитель. Такая технология позволяет значительно снизить расход платины и, соответственно, уменьшить стоимость сенсора. Характеристики сенсора при этом практически не ухудшаются (рис.4).

СЕНСОРЫ НА ОСНОВЕ НАТРИЙПРОВОДЯЩИХ ТВЕРДЫХ ЭЛЕКТРОЛИТОВ

В таких сенсорах в качестве электродов сравнения используют натрий-вольфрамовые бронзы. На границе "бронзаионная мембрана" возникает равновесие по ионам натрия:

 $[Na^+]_{\text{электролит}} \leftrightarrow [Na^+]_{\text{бронза}}.$ (10)

Таким образом, потенциал электрода сравнения зависит только от концентрации натриевых катионов и не изменяется при изменении состава газовой фазы.

Сенсоры сероводорода

В сенсорах сероводорода в качестве рабочих электродов использован сульфид свинца и композиты на его основе. Существует два типа датчиков — один обладает повышенным быстродействием (осажденный электрод), а второй — высокой точностью определения концентрации сероводорода (припрессованный электрод).

Исследования показали, что зависимость ЭДС от концентрации сероводорода различна для сенсоров с разным способом нанесения PbS (рис.5) [3]. Так, для сенсоров с припрессованными РЭ концентрационная зависимость ЭДС имеет "S-образный" характер, а для сенсоров с осажденным РЭ концентрационная зависимость ЭДС линейна в полулогарифмических координатах, однако она

Рис.5. Зависимость ЭДС ячейки от концентрации H₂S для сенсоров с нанесенными и припрессованными рабочими электродами

имеет ненернстовский характер (угол наклона прямой составляет ~73 мВ/дек). Как показано в работе [4], такой тип зависимости может быть связан с квазиравновесной природой протекающих процессов.

При увеличении концентрации H₂S скорость релаксации возрастает (рис.6). Были рассчитаны начальные ско-

Рис.6. Кривые релаксации ЭДС для различных концентраций H₂S в воздухе, полученные для сенсоров сероводорода с осажденным и припрессованными рабочими электродами

рости релаксации (по наклону релаксационных кривых), а также средние скорости релаксации (1/ τ_{90}) для различных концентраций сероводорода. Зависимости начальной скорости релаксации от концентрации сероводорода для ячеек с рабочими электродами как из припрессованного, так и нанесенного из раствора сульфида свинца имеют

линейный характер. Следовательно, с помощью ячеек с рабочими электродами обоих типов можно определить концентрацию сероводорода в первые секунды после ее изменения. При этом для нанесения электродов наклон полученной прямой существенно выше, чем для припрессованных, поэтому точность определения концентрации H₂S в первом случае значительно больше.

В рамках исследования механизма сенсорной активности полученных ячеек и определения потенциалопределяющих процессов был применен комплексный подход, включающий электрохимические, спектроскопические методы анализа, а также квантово-химическое моделирование [3]. Поскольку при действии сероводорода в первую очередь происходит адсорбция и транспорт частиц на поверхности рабочего электрода, основное внимание уделялось изучению процессов, протекающих на поверхности PbS и на границе PbS/NASICON. Интерпретация результатов экспериментов позволяет предположить, что в присутствии сероводорода на поверхности рабочего электрода протекают следующие химические процессы:

Кроме того, происходит обмен натрия в твердом электролите с протонами на поверхности PbS:

$$[\mathsf{H}^+]_{\mathsf{S}} + [\mathsf{Na}^+]_{\mathsf{SF}} \leftrightarrow [\mathsf{Na}^+]_{\mathsf{S}} + [\mathsf{H}^+]_{\mathsf{SF}}.$$
(12)

Далее наблюдается миграция Na⁺ по поверхности сульфида свинца, приводящая к увеличению содержания натрия на поверхности PbS. При протекании этих химических реакций образуется несколько электрохимически активных частиц, которые могут участвовать в электрохимических реакциях:

<u>Рис.7. Концентрационная зависимость ЭДС сенсоров CO₂ с различными материалами ионной мембраны</u>

Рис.8. Датчик водорода

О наличии в системе нескольких электрохимических процессов свидетельствует ненернстовская концентрационная зависимость ЭДС. Продуктами как электрохимических, так и химических процессов, вероятно, являются Na₂S и Na₂SO₃. В общем случае концентрационная зависимость ЭДС для сенсоров сероводорода описывается следующим уравнением:

$$\mathbf{E} = \mathbf{E}_0 + \mathbf{a} \cdot \mathbf{Ig}[\mathbf{H}_2 \mathbf{S}] + \mathbf{b} \cdot \mathbf{Ig}^2[\mathbf{H}_2 \mathbf{S}] \ .$$

Интересно, что в сенсорах сероводорода отсутствует влияние других компонентов газовой фазы, в том числе меркаптанов, на сенсорный отклик.

Сенсоры углекислого газа

Одним из достижений лаборатории ионики твердого тела Института проблем химической физики РАН (г. Черноголовка) является создание высокоэффективного, быстродействующего, работающего при комнатных температурах сенсора углекислого газа. Рабочим электродом в этих сенсорах служит диоксид олова (SnO₂), допированный оксидами сурьмы (Sb₂O₃, Sb₂O₅) [6]. Разработка сенсоров углекислого газа осложняется тем, что на сенсорные свойства влияет и состав использованной ионной мембраны (рис.7).

Так же, как в сенсорах сероводорода, скорость релаксации потенциала датчиков углекислого газа зависит от концентрации, однако эта зависимость нелинейная и мало пригодна для практического применения.

Исследования показали, что в сенсорах CO₂ также протекает несколько процессов с образованием гидро-карбоната или карбоната натрия [7]:

$$Na^{+} + \frac{1}{4}O_{2} + CO_{2} + \frac{1}{2}H_{2}O + e \leftrightarrow NaHCO_{3}$$
, (14)

$$2\mathrm{Na}^{+} + \mathrm{CO}_{2} + \frac{1}{2}\mathrm{O}_{2} + 2\mathrm{e} \leftrightarrow \mathrm{Na}_{2}\mathrm{CO}_{3}^{}, \qquad (15)$$

что приводит в общем случае к нелинейной концентрационной зависимости ЭДС:

$$E = E_0 + a \cdot lg[CO_2] + b \cdot lg^2[CO_2],$$

$$E = E_0 + a \cdot lg[CO_2].$$

Проведенные исследования позволили создать высокоэффективные сенсоры таких активных газов, как CO, CO₂, H₂S, H₂. Полученные датчики отличаются высокой чувствительностью и селективностью. Также их достоинством является низкая стоимость изготовления и эксплуатации.

Совместно с ООО "Элинс" была изготовлена тестовая партия сенсоров водорода (рис.8), а также созданы высокоэффективные сенсоры активных газов: СО, СО₂, H₂S, H₂. Датчики отличаются высокой чувствительностью и селективностью. Низкая стоимость изготовления и эксплуатации делает их пригодными для широкого применения.

<u>ЛИТЕРАТУРА</u>

1. Treglazov I., Leonova L., Dobrovolsky Yu., Ryabov A., Vakulenko A., Vassiliev S. Electrocatalytic effects in gas sensors based on low-temperature superprotonics. – Sensors & Actuators B, 2005, Vol.106, №1, p.164–169. 2. Leonova L., Dobrovolsky Y., Vinokurov A., Treglazov I. Features of behavior of solid-state H_2 sensors at low temperatures. – J. of Solid State Electrochem, 2003, Vol.7, p.87-90. 3. Bukun N., Dobrovolsky Y., Levchenko A., Leonova L., Osadchii E. Electrochemical processes of H₂S detection in air and solution. - J. of Solid State Electrochem, 2003, Vol.7, p.122-124. 4. Dobrovolsky Yu., Leonova L., Vakulenko A. – Solid State Ionics, 1996, Vol. 86-88, p.1017. 5. Левченко А.В., Добровольский Ю.А., Букун Н.Г., Леонова Л.С., Зюбина Т.С., Неудачина В.С., Яшина Л.В., Тарасов А.Б., Шаталова Т.Б., Штанов В.И. – Электрохимия, 2007, т. 43, №5, с.584–592. 6. Dobrovolsky Yu., Leonova L., Vakulenko A. Thermodynamic equilibria and kinetic reversibility of the solid electrolyte/electron conductor/gas boundary at low temperature. - Solid State Ionics, 1996, Vol.86-88, p.1017-1021. 7. Добровольский Ю.А., Леонова Л.С. Рабочие электроды для низкотемпературных сенсоров углекислого газа. – Электрохимия, 1996, т.32, №4, c.482-490.