ПРОЕКТИРОВАНИЕ АНАЛОГОВЫХ И АНАЛОГО-ЦИФРОВЫХ БИС Уменьшение паразитного взаимодействия элементов

Спроектировать работоспособную интегральную микросхему без учета влияния паразитных эффектов на кристалле при современном уровне микроэлектронной технологии уже практически невозможно. Особенно, если речь идет о разработке аналоговых и аналого-цифровых БИС. Даже опытные разработчики не всегда могут предсказать, как отразится на параметрах аналогового устройства паразитное взаимодействие интегральных элементов. В предлагаемой статье рассмотрены основные причины возникновения паразитных эффектов между интегральными элементами и предложены способы проектирования, которые позволяют уменьшить влияние паразитных взаимодействий через подложку кристалла на результирующие характеристики биполярно-полевых ИС.

Переход к субмикронным размерам значительно усложняет синтез аналоговых и аналого-цифровых БИС, так как, с одной стороны, ухудшаются характеристики аналоговых блоков, а с другой — усиливается паразитное взаимодействие между интегральными элементами, расположенными на одной полупроводниковой подложке [1]. В аналого-цифровых БИС паразитное взаимодействие обычно проявляется как влияние переключающихся цифровых блоков на аналоговые. Основной источник помех ток, протекающий через цифровые вентили между шинами питания и нулевого потенциала в момент их переключения. Он приводит к падению напряжения на омическом сопротивлении шин. При увеличении частоты переключений возрастает влияние индуктивности шин, вызывающей возникновение импульсов напряжения.

В аналоговых ИС паразитные RC-элементы в первую очередь приводят к уменьшению крутизны и увеличению И.Абрамов, О.Дворников

уровня шума малошумящих биполярных (БТ) и полевых транзисторов с p-n-переходом (ПТП), а также к изменению формы амплитудно-частотной характеристики и перекрестным помехам [2–5]. Взаимодействие аналоговых блоков через полупроводниковую подложку и межвыводную емкость корпуса может привести к появлению выбросов на фронтах выходных импульсов и даже неконтролируемым колебаниям (самовозбуждению). Авторы предлагают метод проектирования аналоговых БИС, позволяющий уменьшить взаимодействие через полупроводниковую подложку.

влияние подложки

Элементы полупроводниковых ИС расположены на подложке и поэтому характеризуются емкостью "элемент-подложка". Для того, чтобы добиться электрической изоляции, на подложку подают напряжение, обеспечивающее обратное смещение любого p-n-перехода с подложкой при всех допустимых режимах работы. Наличие постоянного напряжения на подложке должно обеспечить ее эквипотенциальность, чтобы перезаряд одного из конденсаторов "элемент-подложка" не влиял на остальные. Однако идеальная эквипотенциальность на практике невозможна. Наши эксперименты показали, что для полупроводниковой подложки р-типа (с удельным сопротивлением 10 Ом см, толщиной 460 мкм) сопротивление между двумя контактами к подложке (размером 120×120 мкм²), расположенными на расстоянии около 2 мм, составляет от 250 до 500 Ом. И, конечно, элементы взаимодействуют через подложку.

Структура элементов, изготовленных по биполярно-полевой технологии, и эквивалентная электрическая схема, которая учитывает влияние подложки, показаны на рис.1[4]. Каждый элемент расположен в отдельном изолированном кармане эпитаксиального слоя n-типа со скрытым n+-слоем и окружен охранным кольцом, сформированным областями р-типа проводимости (p+-скрытым слоем, p-каналом, p+базой). Охранные кольца и донная часть подложки соединены с источником отрицательного напряжения V_{SUB}. Донную и периферийную области в структуре обычно выделяют исхо-

дя из того, что донная емкость пропорциональна площади донной части, а периферийная емкость — длине периметра. В работе [6] сформулировано предположение о том, что на высокой частоте импеданс полупроводниковой подложки имеет емкостной характер, который можно учесть при моделировании, если параллельно всем объемным сопротивлениям R_{SUB} подключить конденсаторы C_{SUB}, которые рассчитывают в соответствии с выражением

$$C_{SUB} = \frac{\varepsilon_0 \varepsilon \rho_{SUB}}{R_{SUB}},$$
 (1)

где ϵ – относительная диэлектрическая проницаемость полупроводника; ϵ_0 – диэлектрическая проницаемость вакуума; ρ_{SUB} – удельное сопротивление подложки.

Идентификация всех параметров эквивалентной схемы (рис.1) с помощью физико-топологического моделирования достаточно сложна. Поэтому для схемотехнического моделирования рекомендуется упрощенная эквивалентная схема (рис.2). Ее параметры можно определить экспериментально, в том числе с помощью разработанной нами тестовой структуры [7].

Уровень взаимодействия элементов через полупроводниковую подложку можно снизить благодаря правильному выбору конструкций активных и пассивных элементов [6, 7]. Для этого влияние подложки необходимо учитывать уже на этапе схемотехнического синтеза и моделирования. Прежде всего, рекомендуется установить источник и приемник помехи. Источником помехи обычно является элемент ИС, инжектирующий в подложку максимальный заряд. Чтобы с помощью Spice-подобных программ определить его, достаточно проинтегрировать во временной области ток, протекающий через эквивалентные сопротивления подложки, которые соединены с внутренним узлом SUB₁ каждого элемента

ОБ АВТОРАХ

Абрамов Игорь Иванович – д.ф.-м.н., профессор Белорусского государственного университета информатики и радиоэлектроники, Минск. E-mail: nanodev@bsuir.edu.by.

> Область научных исследований: физика и моделирование приборов микро- и наноэлектроники. Автор более 260 печатных работ, включая 4 монографии и 4 учебных пособия.

Дворников Олег Владимирович – к.т.н., доцент Белорусского государственного университета информатики и радиоэлектроники, Минск. E-mail: Oleg_Dvornikov@tut.by. Область научных исследований: моделирование и проектирование аналоговых интегральных схем. Автор более 200 печатных работ, включая 1 монографию, 22 авторских свиде-

(см. рис.1). После моделирования переходных процессов в графическом постпроцессоре Probe программ DesignLab Release 8 и Orcad 10 на оси ординат необходимо отобразить переменную, задаваемую для каждого узла выражением:

тельства и патента.

т٨

$$\int_{\text{VIN}}^{\text{MAX}} i_{\text{RSUB 1-1}}(t) dt + \int_{\text{TMIN}}^{\text{TMAX}} i_{\text{RSUB 1-3}}(t) dt, \qquad (2)$$

где $i_{RSUB1-1}(t)$, $i_{RSUB1-3}(t)$ – изменяющийся с течением времени t ток через резисторы R_{SUB1-1} и R_{SUB1-3} ; TMIN, TMAX – пределы интегрирования. В соответствии с принятыми в программе Probe правилами выражение (2) будет иметь вид: S(I(RSUB1-1))+S(I(RSUB1-3)).

Приемник помехи — это элемент ИС, наиболее чувствительный к изменению напряжения элемент-подложка. Его

Рис. 1. Структура элементов, изготовленных по биполярно-полевой технологии, и эквивалентная электрическая схема, учитывающая влияние подложки: SUB₁ — внутренний узел подложки, расположенный максимально близко к i-му элементу; SUB — узел подложки, соединенный с источником напряжения V_{SUB}; C_{P1} — емкость по периметру перехода n+-скрытый слой — подложка; C_{B1} — емкость донной области перехода n+-скрытый слой — подложка; R_{SUB1-1} — сопротивление подложки по периметру перехода n+-скрытый слой — подложка; R_{SUB1-2}, R_{SUB1-3} объемное сопротивление подложки; R_{CONT} — сопротивление контакта металл — подложка; R_{CON} — объемное сопротивление подложки между элементами; R_{GR1} — сопротивление охранного кольца

СИСТЕМЫ ПРОЕКТИРОВАНИЯ

Рис.2. Упрощенная эквивалентная схема для учета влияния подложки

можно выявить при моделировании переходных характеристик, поочередно подавая на внутренний узел подложки SUB_I каждого элемента одинаковый короткий импульс тока и регистрируя изменение выходного сигнала ИС.

Уменьшить степень взаимодействия элементов ИС через подложку можно с помощью следующих способов [8–11]:

- уменьшение емкости "элемент-подложка";
- уменьшение сопротивления подложки между источником (приемником) помехи и охранными кольцами;
- увеличение сопротивления подложки между источником и приемником помехи;
- уменьшение индуктивности проводников, соединяющих охранные кольца с источниками постоянного напряжения;
- применение экранированных контактных площадок.

Для увеличения сопротивления между источником и приемником помехи можно увеличить расстояние между ними и/или удельное сопротивление подложки. Однако в первом случае увеличиваются размеры кристалла, а во втором - изменяются параметры интегральных элементов. Рост **УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ПОДЛОЖКИ ПРИВОДИТ К УСИЛЕНИЮ** влияния охранных колец, так как токи в подложке протекают в основном около поверхности. Протеканию приповерхностных токов препятствует также наличие в подложке глубоко залегающих областей с противоположным типом проводимости (п-карманов в р-подложке) или с окислом кремния, диэлектрических канавок и т.д. Если они есть, то ток протекает в глубине подложки и сопротивление R_{CON} увеличивается (см. рис.2). В подложках с низким удельным сопротивлением, используемых для предотвращения эффекта защелкивания, охранные кольца не эффективны. Основной способ улучшения изоляции элементов - формирование контакта к донной части полупроводниковой пластины и соединение его с источником постоянного напряжения проводником с малой индуктивностью. В случае низкочастотных сигналов для элементов, сформированных в полупроводниковой подложке. соединенной с источником постоянного напряжения, целесообразно применять диэлектрическую изоляцию. Для высокочастотных сигналов качество такой изоляции зависит от величины сопротивления подложки, емкости с подложкой, определяемой толщиной диэлектрика и площадью изолированного кармана. Использование диэлектрика в этом случае может быть менее эффективно, чем охранных колец [10].

В технологических процессах с комбинированной изоляцией элементов окислом и p-n-переходом необходимо обращать внимание на расположение р+-скрытого слоя. Его обычно формируют по всей плошади кристалла вне изолированных карманов (рис.3). В этом случае вследствие малого сопротивления р+-скрытого слоя возможно ухудшение изоляции на переменном сигнале между элементами ИС и контактными площадками, которого можно избежать при использовании экранированных контактных площадок (рис.4) [11]. Экранированные контактные площадки применимы только для техпроцессов, допускающих формирование толстого диэлектрика, например при полной диэлектрической изоляции элементов или при комбинированной изоляции элементов окислом и p-n-переходом. Экран должен быть соединен с шиной нулевого потенциала или источником постоянного напряжения проводником с малой индуктивностью. Если индуктивность соединительного проводника велика, то применение экранированных контактных площадок приводит к усилению взаимодействия между блоками ИС на высокой частоте.

КОНСТРУКТИВНО-СХЕМОТЕХНИЧЕСКИЕ РЕКОМЕНДАЦИИ

На основе анализа имеющейся информации и опыта проектирования многоканальных аналоговых БИС можно сформулировать набор конструктивно-схемотехнических рекомендаций для синтеза аналоговых ИС.

1. В биполярно-полевых ИС емкость "элемент-подложка" соединена с коллектором n-p-n-транзистора и базой горизонтального p-n-p-транзистора. Максимальная величина этой емкости характерна для мощных транзисторов. В связи с этим в выходных каскадах целесообразно применять n-p-n-транзисторы с общим коллектором и p-n-p-транзисторы с общей базой или эмиттером. В таких схемах включения БТ практически фиксируется напряжение на емкостях подложки.

2. Особое внимание следует уделять проектированию каскадов с головными малошумящими ПТП, охваченными резистивно-емкостной обратной связью. В них необходимо:

 уменьшать емкость "затвор-подложка", например, с помощью двухзатворных ПТП [12];

<u>Рис.3. Взаимное расположение контактной площадки и элемента ИС</u> при комбинированной изоляции окислом и р-п-переходом

98

Рис.4. Экранированная контактная площадка

- уменьшать паразитную емкость конденсаторов, высокоомных резисторов и ее влияние на характеристики ИС. Для этого нужно избегать конструкций, в которых рабочие полупроводниковые области контактируют с подложкой, использовать схемы компенсации, а также стараться размещать элементы в отдельных изолированных карманах, на которые через несколько контактов подается напряжение обратного смещения;
- правильно выбирать узлы подключения паразитной емкости [2–4]. Так, с затвором интегрального ПТП обычно соединяют металлическую обкладку МОП-конденсатора.

3. Целесообразно соединять подложку ИС с отдельным выводом корпуса. При этом на p-подложку можно подать напряжение, меньшее, чем отрицательное напряжение питания, и ограниченное только напряжением пробоя p-n-перехода. Небольшая величина тока, протекающего по выводу подложки, не увеличивает потребляемую ИС мощность, а паразитные емкости с подложкой могут быть значительно уменьшены.

4. Дифференциальные каскады наиболее устойчивы к воздействию синфазных помех. Поэтому, чтобы снизить степень взаимодействия аналоговых блоков через подложку, уместно применять дифференциальную или квазидифференциальную структуру тракта [9].

5. При схемотехническом моделировании следует выявить источник и приемник помехи, которая распространяется через подложку, и экранировать их на топологии ИС с помощью охранных колец. Охранные кольца следует через отдельные межсоединения с низкой индуктивностью соединить с контактной площадкой.

6. Для уменьшения влияния подложки можно прикрепить кристалл к металлическому основанию корпуса с помощью эвтектической пайки и подать обратное смещение на полупроводниковую подложку через донную часть кристалла. Альтернативный способ — формирование p+-колец по всей ширине дорожек реза, по которым разделяются кристаллы, и соединение этих p+-колец с контактными площадками, расположенными по периметру кристалла в свободных местах. Максимально возможное число указанных контактных площадок присоединяется проводниками к траверсам корпуса, через которые подается обратное смещение на подложку.

7. Использование нескольких раздельных шин нулевого потенциала и питания позволяет не только уменьшить перекрестные помехи, повысить устойчивость к самовозбуждению, но и максимально снизить потребляемую мощность. Целесообразно все шины источников питания и опорного напряжения соединять с конденсаторами максимальной емкости, сформированными под шинами и на свободной площади кристалла.

8. В аналого-цифровых ИС необходимо предусматривать раздельное исполнение шин нулевого потенциала, питания, охранных колец в цифровой и аналоговой части. Их лучше соединять с разными контактными площадками. Важно также изолировать аналоговую часть на кристалле от цифровой с помощью широкого контакта к подложке.

9. При схемотехническом моделировании нужно определить контактные площадки, взаимодействие которых с подложкой наиболее сильно влияет на характеристики ИС. Чаще всего это контактные площадки, соединенные с головным каскадом. Только выделенные контактные площадки следует экранировать на топологии. Наилучшее решение – соединение экрана каждой контактной площадки с отдельным выводом корпуса или соединение экранов между собой по типу "звезды" на контактной площадке шины нулевого потенциала.

Использование предлагаемого набора конструктивно-схемотехнических приемов проектирования с учетом методики выявления источника и приемника помехи, распространяющейся через подложку, позволяет минимизировать влияние паразитных взаимодействий между интегральными элементами на работоспособность аналоговых биполярнополевых ИС.

<u>ЛИТЕРАТУРА</u>

 Абрамов И.И., Дворников О.В. Тенденции и проблемы проектирования прецизионных аналоговых интерфейсов. – Нано- и микросистемная техника, 2005, № 10, с.23–35.
Дворников О.В. Описание элементов в Pspice для высокоточного моделирования аналоговых биполярных ИС. Часть 1. Интегральные резисторы. – Проблемы современной аналоговой микросхемотехники: Сб. материалов Межд. научно-практ. семинара, Шахты: Издательство "ЮРГУЭС", 2003, ч. 1, с.23–27.

3. **Дворников О.В.** Описание элементов в Pspice для высокоточного моделирования аналоговых биполярных ИС. Часть 2. Интегральные конденсаторы. – Проблемы современной аналоговой микросхемотехники: Сб. материалов Межд. научно-практ. семинара, Шахты: Издательство "ЮРГУЭС", 2003, ч. 1, с.45–48.

4. Baturitsky M.A., Dvornikov O.V. Multichannel monolithic front-end system design. Part 4. Front-end system stability and channel-to-channel coupling. – Nuclear Instruments and Methods in Physics Research, 1997, vol. A398, p. 308–314. 5. Абрамов И.И., Дворников О.В. Маршрут моделирования биполярно-полевых аналоговых интегральных схем в программах типа "SPICE". – Нано- и микросистемная техника, 2006, № 11, с. 30–35. МИКРОПРОЦЕССОРНАЯ И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА

6. **Pfost M., Rein H-M.** Modeling substrate effects in the design of high-speed Si-bipolar IC's. – IEEE Journal of Solid-State Circuits, 1996, vol. 31, № 10, р. 1493–1501. 7. **Дворников О.В.** Описание элементов в Pspice для высокоточного моделирования аналоговых биполярных ИС. Часть 4. Минимизация взаимодействия элементов через полупроводниковую подложку. – Проблемы современной аналоговой микросхемотехники: Сб. материалов IV Межд. научно-практ. семинара, Шахты: Издательство "ЮРГУЭС", 2005, с. 73–77.

8. **Ingels M, Steyaert M.S.J.** Design strategies and decoupling techniques for reducing the effects of electrical interference in mixed-mode ICs. – IEEE Journal of Solid-State Circuits, 1997, vol. 32, №7, p. 1136–1141.

9. Alexeev G.D., Baturitsky M.A., Dvornikov O.V. et.all. The eight-channel ASIC bipolar transresistance amplifier D0M AMPL-8.3. – Nuclear Instruments and Methods in Physics Research, 2001, vol. A 462, p. 494–505.

 Gharpurey R., Meyer R.G. Modeling and analysis of substrate coupling in integrated circuits // IEEE Journal of Solid – State Circuits. 1996. vol. 31, №3. p. 344–352.
Colvin J.T., Bhatia S.S., Kenneth K.O. Effects of substrate resistances on LNA performance and a bond-pad structure for reducing the effects in silicon bipolar technology. – IEEE Journal of Solid-State Circuits, 1999, Vol. 34, №9, p. 1339–1344.
Дворников О.В., Чеховский В.А., Шульгевич Ю.Ф. Универсальный набор двухзатворных полевых транзисторов с p-п-переходом. – Chip News, 2005, №9, с.26–30.

29-я редакция списка 500 мощнейших суперкомпьютеров: скрытые сенсации

27 июня на традиционной конференции по суперкомпьютингу (ISC'07) в Дрездене была представлена 29-я редакция списка 500 мощнейших суперкомпьютеров TOP500 (www.top500.org). За последний год TOP500 особых сенсаций не преподносил — ситуация напоминала "затишье перед бурей". Нынешняя же редакция кроет в себе ряд сюрпризов, говорящих о начале новых процессов в суперкомпьютинге.

Лидер остался прежним - BlueGene/L от IBM в Ливерморской национальной лаборатории США. Но вот занимавший вторую позицию Red Storm компании Cray с максимальной производительностью 101,4 TFlops сместился на строчку вниз, уступив свое место другому продукту Cray – Jaguar Cray XT4/XT3. Этот монстр с производительностью 101,7 TFlops создан путем объединения систем Jaguar XT3 (10 место в 28-й редакции ТОР500) и XT4, установленных в Окриджской национальной лаборатории США. В ТОР10 вошли и две новые системы BlueGene/L (5 и 7 места). Это - наиболее мощные компьютеры, установленные в академических научных центрах. Также отметим появление в ТОР10 новой системы компании Dell (8 место). Примечательно, что восемь первых суперкомпьютеров установлены в США. Крупнейший европейский компьютер MareNasrum сместился с 5 на 8 место. Второй по мощности в Европе стала система HLRB-II Altix 4700 компании Silicon Graphics (SGI), установленная в Мюнхене. Япония в ТОР10 не представлена - видимо, ненадолго.

В целом "входной билет" в TOP500 составляет 4005 GFlops (год назад — почти вдвое меньше, 2026 GFlops). Общая максимальная производительность компьютеров TOP500 за полгода выросла в 1,4 раза — с 3,5 до 4,9 PFlops, причем половину этой величины обеспечивают первые 80 компьютеров.

Занимающий 499 место компьютер в прошлой редакции ТОР500 был на 215 месте. Это — самое существенное обновление списка более чем за 10 лет. А всего в списке 304 компьютера, датированные 2007 годом (с учетом модернизации).

Впервые за всю историю Россия представлена в ТОР500 сразу пятью суперкомпьютерами. Крупнейшая в стране

система "СКИФ Cyberia" в Томском государственном университете с максимальной производительностью 9,01 TFlops занимает 105 место. На 187 строчку опустился суперкомпьютер MVS-15000BM Межведомственного суперкомпьютерного центра РАН (6,646 TFlops). Появился в этом центре и новый мощный кластер на базе BL460c компании Hewlett-Packard (5,741 TFlops, 265 место). Два других кластера от Hewlett-Packard (HP) установлены в компании Logistic Services (5,242 TFlops, 294 место) и в Московском физико-техническом институте (4,526 TFlops, 415 место).

По числу установленных компьютеров в ТОР500 впервые с ноября 2003 года компания IBM (192 системы) уступила пальму первенства НР (201 компьютер). Но по общей вычислительной мощности IBM опережает НР почти вдвое – 2,06 против 1,19 PFlops. Компьютеры НР и IBM составляют 40,2 и 38,4% всех систем в ТОР500, соответственно. За ними неизменно следуют Dell (22 системы; 4,4%), SGI (19; 3,8%), Cray (11; 2,2%), Linux Networx (9; 1,8%), Sun Microsystems (7; 1,4%) и Hitachi (6; 1,2%). По сравнению с прошлым годом резко усилила свои позиции в ТОР500 компания Hitachi.

Практически вдвое увеличилось присутствие процессоров Intel. Причем если полгода назад численно доминировали системы на основе архитектуры IA-32 (120 компьютеров), то сегодня в ТОР500 осталось лишь 28 таких систем. Зато более чем удвоилось число суперкомпьютеров на основе процессоров с архитектурой Intel EM64T - со 108 до 231. Более того, по установленной вычислительной мощности процессоры Intel EM64T (1.79 PFlops) впервые обошли семейство Power (1,46 PFlops). А ведь еще полгода назад суммарная максимальная производительность компьютеров на основе EM64T составляла лишь 0,6 PFlops. Среди семейства EM64T лидируют процессоры Xeon 51xx (Woodcrest) – они использованы в 204 системах. За ними следуют процессоры Opteron Dual Core от AMD (91 система). 34 суперкомпьютера построены на базе PowerPC 440. Причем последние — безусловные лидеры по абсолютному показателю: компьютеры ТОР500 используют

29 редакция ТОР500, июнь 2007 года

Номер	Компьютер, система коммутации	Произво- дитель	Процессор	Такотовая частота, МГц	Число про- цессоров	Производительность, GFlops				_
						Максималь- ная	Пиковая	Где установлен	Страна	Тод
1	eServer Blue Gene Solution	IBM	PowerPC 440	700	131072	280600	367000	DOE/NNSA/LLNL	США	2005
2	Jaguar – Cray XT4/XT3	Cray Inc.	AMD x86_64 Opteron Dual Core	2600	23016	101700	119350	Oak Ridge National Laboratory	США	2006
3	Cray Red Storm	Cray Inc.	AMD x86_64 Opteron Dual Core	2400	26544	101400	127411	NNSA/Sandia National Laboratories	США	2006
4	BGW eServer Blue Gene Solution	IBM	PowerPC 440	700	40960	91290	114688	IBM Thomas J. Watson Research Center	США	2005
5	New York Blue – eServer Blue Gene Solution	IBM	PowerPC 440	700	36864	82161	103219	Stony Brook/BNL, New York Center for Computional Sciences	США	2007
6	ASC Purple – eServer pSeries	IBM	POWER5	1900	12208	75760	92781	DOE/NNSA/LLNL	США	2006
7	eServer Blue Gene Solution	IBM	PowerPC 440	700	32768	73032	91750	Rensselaer Polytechnic Institute, Computional Center for Nanotechnology Innovations	США	2007
8	Abe – PowerEdge 1955, Infiniband	Dell	Intel EM64T Xeon 53xx (Clovertown)	2333	9600	62680	89587,2	NCSA	США	2007
9	MareNostrum – BladeCenter JS21 Cluster, Myrinet	IBM	PowerPC 970	2300	10240	62630	94208	Barcelona Supercomputing Center	Испания	2006
10	HLRB-II Altix 4700	SGI	Intel IA-64 Itanium 2	1600	9728	56520	62259,2	Leibniz Rechenzentrum	Германия	2007
11	Thunderbird – PowerEdge 1850, Infiniband	Dell	Intel EM64T Xeon EM64T	3600	9024	53000	64972,8	NNSA/Sandia National Laboratories	США	2006
12	Tera-10 – NovaScale 5160, Quadrics	Bull SA	Intel IA-64 Itanium 2	1600	9968	52840	63795,2	Commissariat a l"Energie Atomique (CEA)	Франция	2006
13	Columbia – SGI Altix, Voltaire Infiniband	SGI	Intel IA-64 Itanium 2	1500	10160	51870	60960	NASA/Ames Research Center/NAS	США	2004
14	TSUBAME Grid Cluster - Sun Fire x4600 Cluster, Infiniband	NEC/Sun	AMD x86_64 Opteron Dual Core	2400	11088	48880	78796,8	GSIC Center, Tokyo Institute of Technology	Япония	2006
15	PowerEdge 1955, Infiniband	Dell	Intel EM64T Xeon 51xx (Woodcrest)	2667	5848	46730	62220	Texas Advanced Computing Center/ University of Texas	США	2007
16	PowerEdge 1955, Infiniband	Dell	Intel EM64T Xeon 51xx (Woodcrest)	3000	5200	42390	62400	Maui High-Performance Computing Center (MHPCC)	США	2006
17	Evolocity II (LS Supersystem), Infiniband	Linux Networx	Intel EM64T Xeon 51xx (Woodcrest)	3000	4416	40610	52992	US Army Research Laboratory (ARL)	США	2007
18	eServer Blue Gene Solution	IBM	PowerPC 440	700	16384	37330	45875	Forschungszentrum Juelich (FZJ)	Германия	2006
19	Appro Xtreme Server, Infiniband	Appro International	AMD x86_64 Opteron Dual Core	2400	9216	36580	44240	Lawrence Livermore National Laboratory (LLNL)	США	2007
20	Earth Simulator	NEC	NEC	1000	5120	35860	40960	The Earth Simulator Center	Япония	2002
105	Xeon Cluster, QLogic InfiniPath	T-Platforms	Intel EM64T Xeon 51xx (Woodcrest)	2667	 1128	9010	12002	Томский государственный универ- ситет	Россия	2007
187	MVS-15000BM, eServer BladeCenter JS20, Myrinet	IBM	PowerPC 970	2200	1148	6645,53	10102,4	Межведомственный суперкомпью- терный центр РАН	Россия	2006
265	Cluster Platform 3000 BL460c, Infiniband	Hewlett- Packard	Intel EM64T Xeon 51xx (Woodcrest)	3000	640	5741	7680	Межведомственный суперкомпью- терный центр РАН	Россия	2007
294	Cluster Platform 3000 BL460c, GigEthernet	Hewlett- Packard	Intel EM64T Xeon 51xx (Woodcrest)	3000	672	5242	8064	Logistic Services	Россия	2007
415	Cluster Platform 3000 DL140G3, Myrinet	Hewlett- Packard	Intel EM64T Xeon 51xx (Woodcrest)	3000		4526	6528	МФТИ	Россия	2007
500	Integrity Superdome, HyperPlex	Hewlett- Packard	Intel IA-64 Itanium 2	1500	896	4005	5376	BMW AG	Германия	2007

более 391 тыс. таких процессоров. Всего же в компьютерах ТОР500 применен 1 млн 221 тыс. процессорв.

В сфере операционных систем вот уже три года безраздельно доминирует Linux — 389 компьютеров из ТОР500 работают под управлением ОС этого семейства. Еще 60 под управлением Unix. Причем ведущие суперкомпьютеры BlueGene/L функционируют под управлением созданной на основе Linux OC SuSE Linux Enterprise Server (CNK/SLES).

США по-прежнему лидируют по числу установленных систем – 281 компьютер. За ними следуют Великобритания (42

системы), Германия (24), Япония (23), Франция и КНР (по 13), Тайвань, Швеция и Канада (по 10). По суммарной вычислительной мощности картина несколько иная: США (62%), Великобритания (6,6%), Япония (5,8%), Германия (5,1%), Франция (3,2%), Испания (2,0%) и Китай (1,9%). Россия по этому показателю впервые на достаточно высоком 18 месте (из 33). Впервые в ТОР500 представлен Вьетнам (кластер HP, 4,7 GFlops, 394 строка). Суперкомпьютеризация продолжается.

И.Шахнович, по материалам www.top500.org