новые российские танталовые конденсаторы

В современной электронике пассивные дискретные компоненты, к которым относятся конденсаторы, продолжают играть важную роль. Сегодня на отечественном рынке электронных компонентов в основном представлена продукция зарубежных фирм. Чтобы быть полноправными участниками этого рынка, российские производители должны постоянно предлагать потребителям новые разработки, особенно таких изделий, как танталовые конденсаторы, которые благодаря своим характеристикам и функциональным возможностям выгодно отличаются от других типов конденсаторов и являются наиболее динамично развивающимися компонентами. Что же сделано отечественными разработчиками и какие новые типы российских танталовых конденсаторов появились на рынке в 2005 году?

Сегодня у разработчиков и специалистов, занимающихся производством электронной техники, наибольшим спросом пользуются конденсаторы для поверхностного монтажа. Поэтому специалисты ОАО "Элеконд" уделяют большое внимание разработке таких компонентов. Одна из последних разработок компании — новый танталовый оксидно-полупроводниковый чип-конденсатор К53-65, предназначенный для электронной аппаратуры специального назначения, которая критична к массогабаритным показателям используемых компонентов. Изделие имеет защищенную конструкцию, низкое полное сопротивление, малые токи утечки.

Конденсатор выпускается в габаритах корпуса A, B, C, D, E (рис.1, табл.1,2), соответствующих требованиям стандартов МЭК. Номинальное напряжение 4,0–50 B, номинальная емкость 0,1–470 мкФ, интервал рабочих температур -60...125°C. Минимальная наработка на отказ при 0,63 $U_{\text{ном}}$ и T = 125°C составляет 30 тыс. ч; при $U_{\text{ном}}$ и T = 85°C – 30 тыс. ч; при 0,6 $U_{\text{ном}}$ и T = 55°C – 200 тыс. ч. Срок сохраняемости 25 лет. Полное сопротивление

Рис. 1. Общий вид конденсатора К53-65

на частоте 100 к Γ ц равно 0,9-8,0 Ом, эквивалентное последовательное сопротивление на частоте 100 к Γ ц – от 0,78 до 7,8 Ом.

в Федо

ond@udm.net

Упаковка конденсаторов в блистерную ленту соответствует всем требованиям автоматического монтажа.

Таблица 1. Габариты и масса конденсатора К53-65

Код габарита	L, мм	В, мм	Н, мм	Р, мм	W, мм	Масса, г
A	3,2-0,2	1,6-0,2	1,6-0,2	0,8-0,3	1,2-0,1	0,05
В	3,5-0,2	2,8-0,2	1,9-0,2	0,8-0,3	2,2-0,1	0,06
С	6,0-0,3	3,2-0,3	2,5-0,3	1,3-0,3	2,2-0,1	0,3
D	7,3-0,3	4,3-0,3	2,9-0,3	1,3-0,3	2,4-0,1	0,5
E	7,3-0,3	4,3-0,3	4,1-0,3	1,3-0,3	2,4-0,1	0,6

Таблица 2. Габариты конденсаторов K53-65 в зависимости от номинального напряжения

C _{HOM} ,	Габариты корпуса в зависимости от номинального напряжения								
мкФ	4 B	6,3 B	10 B	16 B	20 B	25 B	32 B	40 B	50 B
0,1	-	-	-	-	-	-	-	-	Α
0,15	-	-	-	-	-	-	-	-	Α
0,22	-	-	-	-	-	-	-	Α	В
0,33	-	-	-	-	-	-	Α	В	В
0,47	-	-	-	-	-	Α	В	В	С
0,68	-	-	-	-	Α	Α	В	В	С
1	•	-	-	Α	Α	В	В	С	С
1,5	-	-	Α	Α	Α	В	С	С	D
2,2	•	Α	Α	Α	A,B	С	С	С	D
3,3	Α	Α	A,B	A,B	В	С	С	D	D
4,7	Α	В	В	В	В	С	D	Е	Е
6,8	A,B	В	В	B,C	С	D	D	Е	Е
10	В	С	B,C	С	С	D	D	-	-
15	В	С	С	С	C,D	D	Е	-	-
22	B,C	С	С	D	D	Е	Е	-	-
33	С	С	C,D	D	D	Е	ı	-	-
47	С	D	D	D	Е	-	-	-	-
68	С	D	D	Е	Е	-	•	-	-
100	С	D	D,E	Е	Е	-	-	-	-
150	D	D,E	D,E	Е	-	-	•	-	-
220	D,E	Е	Е	-	-	-	-	-	-
330	D,E	Е	-	-	-	-	1	-	-
470	Е	Е	-	-	-	-	-	-	-

Для аппаратуры общепромышленного назначения разработан танталовый оксидно-полупроводниковый чип-конденсатор К53-69, аналогичный по своим основным техническим характеристикам конденсатору К53-65.

Внедрение новых технологий и применение современных материалов позволило улучшить характеристики давно используемых конденсаторов. На замену конденсаторам К53-1A, К53-4, К53-4A, К53-14. К53-18 разработан и серийно выпускается танталовый ок-

Таблица 3. Габариты и масса конденсатора К53-66

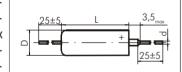

Код корпуса	Массогабаритные показатели конденсатора						
	D, мм	L, мм	d, мм	Масса, г			
Α	3,2 ^{+0,5} _{-0,1}	7,5±0,3	0,6±0,1	1,0			
В	4 ^{+0,5}	10±0,3	0,6±0,1	1,2			
С	4 ^{+0,5}	13±0,3	0,6±0,1	1,8			
D	7 ^{+0,5}	12±0,3	0,8±0,1	4,5			
E	7 ^{+0,5}	16±0,3	0,8±0,1	6,0			

Таблица 4. Габариты конденсаторов K53-66 в зависимости от номинального напряжения

C _{HOM} ,	Габариты корпуса в зависимости от номинального напряжения							
мкФ	6,3 B	10 B	16 B	20 B	32 B	40 B	50 B	
0,22	-	-	-	Α	Α	Α	Α	
0,33	-	-	-	Α	Α	Α	Α	
0,47	-	-	-	Α	Α	Α	Α	
0,68	Α	Α	Α	Α	Α	Α	Α	
1	Α	Α	Α	Α	Α	Α	Α	
1,5	Α	Α	Α	Α	Α	Α	Α	
2,2	Α	Α	Α	Α	Α	Α	A B	
3,3	Α	Α	Α	Α	Α	Α	В	
4,7	Α	Α	Α	Α	Α	Α	В	
6,8	Α	Α	Α	Α	Α	A, B	B, C	
10	Α	Α	Α	Α	A, B	В	С	
15	Α	Α	Α	AΒ	В	B, C	C, D	
22	Α	Α	Α	В	В	С	D, E	
33	Α	A, B	A,B	В	B, C	C, D	Е	
47	A, B	В	В	B, C	С	D	Е	
68	В	В	В	C, D	C, D	D, E	Е	
100	В	B. C	B, C	D	D, E	Е	-	
150	B, C	C, D	C, D	D, E	Е	Е	-	
220	C, D	D	D	Е	Е	-	-	
330	D	D, E	D, E	Е	Е	-	-	
470	D, E	Е	Е	-	-	-	-	
680	Е	Е	Е	-	-	-	-	
1000	Е	Е	-	-	-	-	-	

сидно-полупроводниковый полярный конденсатор в герметичном

цилиндрическом стальном корпусе К53-66 (рис.2, табл.3,4). Благодаря применению высокоемких танталовых порошков новый конденсатор имеет лучшие, по сравнению с отечественными аналогами, параметры удельной емкости. У нового изделия расши-

<u>Рис.2. Конденсатор К53-66 в ци-</u> <u>линдрическом корпусе</u>

рена шкала типономиналов, включающая номинальную группу конденсаторов на напряжение 50 В. Объемные показатели снижены в 1,6-2 раза, масса уменьшена в 1,1-3,5 раза, благодаря чему конденсатор можно использовать в аппаратуре специального назначения.

Номинальное напряжение K53-66 составляет 6,3–50 B; номинальная емкость — 0,22–1000 мкФ. Минимальная наработка на отказ при $U_{\text{ном}}$ и T = 85°C - 30 тыс. ч; при 0,7 $U_{\text{ном}}$ и T = 125°C - 10 тыс.ч; при 0,6 $U_{\text{ном}}$ и T = 60°C - 200 тыс. ч. Интервал рабочих температур -60°С...125°С.

Применение новых конденсаторов K53-65, K53-69 и K53-66 позволит увеличить плотность монтажа компонентов на поверхность платы с одновременным уменьшением трудоемкости и повышением качества монтажа, повысить безотказность и долговечность работы аппаратуры, снизить себестоимость конечной продукции.