## КОНСТРУКТИВНО-ТЕХНОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ЭМИТТЕРА БЫСТРО ВОССТАНАВЛИВАЮЩИХСЯ ДИОДОВ С МЯГКИМ ВОССТАНОВЛЕНИЕМ

Быстро восстанавливающиеся диоды (БВД) используются в качестве элементной базы управляемых твердотельных ключей постоянного тока — IGBT, IGCT и т.п. Требования к комплектным БВД (т.е. диодам, согласованным с IGBT, IGCT для сборки в один модуль) весьма жесткие и технологически трудновыполнимые. Прежде всего они не должны уступать IGBT по быстродействию и должны иметь оптимальное сочетание статических и динамических параметров. Кроме того, БВД должны обеспечивать мягкий характер обратного восстановления и обладать повышенной устойчивостью к высоким скоростям изменения тока коммутации при работе на индуктивную нагрузку.

Врежиме обратного восстановления, когда диод закрывается, накопленный им заряд должен разрядиться, что приводит к росту его обратного тока. Кривая этого тока характеризует режим обратного восстановления диода (рис.1). Время восстановления обратного сопротивления t<sub>rr</sub> определяется интервалом между началом процесса восстановления обратного сопротивления t<sub>o</sub> и моментом, когда



<u>Рис. 1. Кривые тока и напряжения процесса "мягкого" восстановления</u> <u>диода в цепи</u>





В.Громов, А.Лебедев, В.Потапчук, П.Ястребов

значение обратного тока диода достигает 20% пикового значения I<sub>rrm</sub>.

Для процесса мягкого восстановления обратного сопротивления диода характерен график, приведенный на рис.1. Одним из условий получения мягкого восстановления является увеличение коэффициента "мягкости" s =  $t_{rrf}/t_{rrr}$ , где  $t_{rrf}$  – время спада тока обратного восстановления (reverse recovery current fall time), определяемое по уровню 0,2 I<sub>rrm</sub>;  $t_{rrr}$  – время нарастания тока обратного восстановления (reverse recovery current rise time). Это достигается путем контролируемого уменьшения эффективности инжекции эмиттера и, следовательно, концентрации избыточных носителей в базе со стороны эмиттерного  $p^+$ -n(p-i)-перехода. Для заданного значения  $t_{rrr}$  это эквивалентно требованию уменьшения  $t_{rrrr}$  и, соответственно, пиковых значений обратного тока I<sub>rrm</sub>.

Другое условие "мягкости" восстановления — исключение эффекта срыва, т.е. резкого сброса обратного тока с чрезмерно высокой скоростью dl<sub>в</sub>/dt.

Один из способов улучшения режимов восстановления диодов и увеличения коэффициента "мягкости" — реализация так называемой эмиттерной концепции. В обычных p-i-n-диодах (рис.2) p-n-переход накапливает больше носителей заряда, чем n-n<sup>+</sup>-переход. Эмиттерная концепция предусматривает формирование обратного распределения носителей заряда: превышение концентрации носителей в n-n<sup>+</sup>-переходе по сравнению с p-n-переходом за счет уменьшения инжекции носителей p-эмиттером.

Существуют различные структуры эмиттеров, способствующих снижению инжекции. Например, "p-i-n/Шоттки диод",



Рис.2. БВД с: а — p-i-n/Шоттки-структурой; б — эмиттером с низкой концентрацией носителей

состоящий из последовательности *p*<sup>+</sup>-областей и областей с переходом Шоттки [1] (рис. 2а). Достоинства перехода Шоттки или подобных ему областей — малые значения падения прямого напряжения (0,5–0,6 В) при номинальном токе и отсутствие избыточного тока — проявляются лишь при обратном напряжении менее 600 В. При значениях обратного напряжения 1000 В и более достоинства использования областей Шоттки слабо ощутимы.

Сегодня разработки направлены на улучшение режима обратного восстановления путем уменьшения концентрации носителей эмиттера [2, 3]. Однако этот, казалось бы, простой метод снижения эффективности эмиттера приводит к увеличению падения прямого напряжения из-за увеличения сопротивления перехода металл-эмиттер. Кроме того, как показали статистические данные, число отказов, вызванных низкой концентрацией примеси эмиттера диодов и, следовательно, высоким сопротивлением р<sup>-</sup>-области (160 Ом/кв), было больше, чем у диодов с высокой концентрацией примеси и меньшим сопротивлением р-области (60 Ом/кв). Но у диодов с низкой концентрацией примеси р-области процесс обратного восстановления улучшался. Таким образом, требования к технологии формирования БВД противоречивы: с одной стороны, необходимо обеспечить "мягкое" восстановление, с другой - динамическую устойчивость, и даже при ограничении "мягкого" восстановления выхода диодов из строя полностью избежать не удается.

Дальнейшего улучшения процесса обратного восстановления можно добиться за счет комбинации двух последних вариантов – создания ячеистой структуры с чередующимися *p*<sup>+</sup>и p<sup>-</sup>-областями. Правда, и этот метод формирования эмиттера не лишен недостатков. Наличие мелких (глубиной менее 1 мкм) слаболегированных областей (с концентрацией носителей менее 10<sup>16</sup> см<sup>-3</sup>) приводит к снижению выхода годных диодов, так как при обратном смещении области мелкого перехода не всегда защищаются за счет перекрытия объемным зарядом смежных p<sup>+</sup>-областей, что обусловлено поверхностными дефектами кристалла, возникающими при проведении технологических операций.

Указанные недостатки можно устранить путем формирования глубокой (6-20 мкм) слаболегированной (менее 7.10<sup>15</sup> см<sup>-3</sup>) области эмиттера и последующего легирования поверхностного слоя до концентрации 5.10<sup>18</sup> см<sup>-3</sup> для обеспечения надежного контакта эмиттера с металлом. В такой конструкции эмиттер действует так же, как и в ячеистой.

Были изготовлены и обследованы образцы БВД на ток 50 A с различной конструкцией эмиттера (см. таблицу). Для получения требуемого быстродействия кристаллы с диодами перед посадкой в корпус прошли операцию регулирования времени жизни неосновных носителей путем облучения протонами.

| Сводные   | усредненные                | данные   | статических | <u>к и динамических</u> |
|-----------|----------------------------|----------|-------------|-------------------------|
| араметров | к <mark>, измеренны</mark> | х при но | рмальной т  | <u>емпературе</u>       |

| Конструкция                                                             | Статический<br>режим                     | Динамический режим   |                        |                       |                       |                      |      |  |
|-------------------------------------------------------------------------|------------------------------------------|----------------------|------------------------|-----------------------|-----------------------|----------------------|------|--|
| эмиттера<br>диода                                                       | Прямое паде-<br>ние напряже-<br>ния U, B | I <sub>rrm</sub> , A | Q <sub>rr</sub> , мкКл | t <sub>rrr</sub> , нс | t <sub>rrf</sub> , нс | t <sub>rr</sub> , нс | S    |  |
| Сплошной<br><i>р</i> <sup>+</sup> -типа                                 | 2,5                                      | 36                   | 5,4                    | 90                    | 60                    | 150                  | 0,67 |  |
| <i>р⁺</i> -переход<br>Шоттки                                            | 2,7                                      | 20                   | 1,3                    | 50                    | 80                    | 130                  | 1,6  |  |
| Ячеистый<br>p <sup>+</sup> -p <sup>-</sup>                              | 2,6                                      | 26                   | 3,4                    | 65                    | 65                    | 130                  | 1    |  |
| Глубокий р <sup>-</sup> -типа<br>с р <sup>+</sup> -подлегиро-<br>ванием | 2,5                                      | 25,6                 | 3,3                    | 64                    | 67                    | 131                  | 1,04 |  |

Наилучшими динамическими параметрами обладают диоды p<sup>+</sup>-Шоттки. Однако при температуре 125°С обратные токи этих диодов оказались максимальными в сравнении с другими типами диодов (до 4 мА), что не позволяет использовать их в качестве элементной базы управляемых твердотельных ключей постоянного тока. В то же время по выходу годных диоды с глубоким p<sup>-</sup>-слоем эмиттера превосходили в полтора раза диоды с p<sup>+</sup>-Шоттки и ячеистой структурами эмиттера. Очевидно, такая структура эмиттера предпочтительна с точки зрения выполнения противоречивых требований к одновременному обеспечению "мягкого" восстановления обратного сопротивления и технологичности изготовления БВД.

## ЛИТЕРАТУРА

1. **Baliga, B.J.** Analysis of a High Voltage Merged p-i-n/Schottky (MPS).— Rectifier IEEE El. Dev. Letters, 1987, Edl., v.8, No.9.

2. **Porst A.** et al. Improvement of the Diode Characteristics using Emitter-Controlled Principles (EMCONDiode).– ISPSD, 1997, Weimar Proc., p.213–216.

3. Rahimo M.T.; Shammas N.Y.A. Optimisation of the Reverse Recovery Behavior of Fast Power Diodes Using Injection Efficiency and Lifetime Control Techniques.- EPE'97, Trondheim. Proc., v.2, p.99–10.