Н.Слепов

СЕМИНАР КОМПАНИИ CORNING В МОСКВЕ

14 апреля 2004 года компания Corning SNG (отделение в странах СНГ компании Corning Inc., США, — крупнейшего в мире производителя оптического волокна) провела в Москве очередной технический семинар "Развитие технологий оптической связи: 2003—2004 гг."

Во вступительном слове Арина Корнильева — директор по маркетингу и продажам в странах Восточной Европы компании Corning Optical Fiber — обрисовала ситуацию, сложившуюся на мировом рынке оптического волокна в 2003 году после снижения (почти в два раза) продаж в 2002 году.

По ее словам, операторы дальней связи страдали от избытка емкости сетей и множества конкурентов, что обусловило падение цен и снижение прибыли на вложенный капитал ниже ожидаемой. Вывод неутешительный: нужно снижать затраты на строительство сетей, а это значит отсрочить вложение средств в новое строительство и уменьшить закупки волокна, что, собственно, и произошло в 2002 году. Динамика развития производства волокна показывает, что спрос на него в 2003 снизился (табл.1) примерно до уровня 1998 года и составил 55 млн. км (хотя в России отмечен рост на 30% при уровне примерно 900 тыс. км), а производственные мощности упали в 2003 до уровня 2000 года. Однако уровень избыточных производственных мощностей все еще велик (больше 100%).

На 2004 год в среднем прогнозируется небольшой рост спроса (до уровня в 60 млн. км, тогда как в России до уровня 1,1 млн. км).

В целом финансовое положение операторов стабилизируется благодаря проведенной реструктуризации бизнеса и долгов, а положение поставщиков оборудования — благодаря сокращению расходов и стабилизации продаж.

Выступивший затем руководитель инженерного отдела Сергей Акопов рассказал, по материалам ежегодной оптоволоконной конференции "ОFC-04", о разработке и испытаниях новых волокон ведущими научными центрами, в частности о фотонно-кристаллических волокнах. Кроме этого, во второй части семинара он осветил инженерные проблемы, связанные с применением оптических волокон, а также измерительные аспекты использования бриллюэновского рефлектометра в сетях связи.

В 2004, как и в 2003 году, во всем мире продолжается рост услуг широкополосного доступа, в частности активно развивается услуга "волокно в дом" (FTTH). Наиболее амбициозные планы

Таблица 1. Производство и реализация оптического волокна

Параметр	1998	1999	2000	2001	2002	2003
Производственные мощности, млн. км	66	78	118	159	151	115
Спрос на волокно, млн. км	54	80	117	119	64	55
Избыточные мощности, %	22	-3	1	34	136	109

развития FTTH представила Япония в своей программе "Электронная Япония". В России есть аналогичная программа, однако о ее успехах в этой области практически не слышно.

Компания Corning в поддержку развития этой услуги, а именно расширения использования сетей кабельного телевидения (КТВ) и пассивных оптических сетей (ПОС), разработала новое одномодовое волокно NexCor, которое полностью совместимо с широко распространенным стандартным одномодовым волокном SMF-28e той же компании. При использовании инновационной технологии MaxPower волокно NexCor позволяет преодолеть основное ограничение аналоговых сетей (вынужденное рассеяние Мандельштама-Бриллюэна — ВРМБ) и передавать сигналы в два раза большей мощности (+3 дБ) при том же уровне мощности отраженного сигнала, что позволяет в сетях КТВ в два раза увеличить коэффициент разветвления полезного сигнала в распределительной сети, т.е. в два раза увеличить число обслуживающих ТВ-абонентов при сохранении стандартного уровня качества ТВ-сигнала.

С двумя интересными и содержательными докладами, поясняющими суть проведенных инноваций, выступил технический специалист компании Джим Грошинский (James M. Grochjcinski, PhD).

В первом докладе "Бриллюэновское рассеивание (SBS) в оптических волокнах" был подробно рассмотрен механизм спонтанного и вынужденного рассеяния Мандельштама-Бриллюэна (РМБ) - одного из нелинейных пороговых эффектов (см. вставку), наблюдаемых в оптическом волокне при воздействии на него светового потока определенной (выше пороговой) мощности. Пороговый уровень для ВРМБ в одномодовом волокне довольно низок и для непрерывной накачки составляет всего 1 мВт. Если мощность излучения в волокне превышает этот порог, то часть мощности преобразуется в стоксово излучение, распространяющееся в обратном направлении. Это приводит к тому, что, вопервых, мощность принимаемого сигнала оказывается меньше ожидаемой, во-вторых, стоксово излучение, направленное в сторону передатчика, может нарушить его работу. Ясно, что избежать этого можно путем увеличения порога ВРМБ. Исследования показывают, что наиболее низкий порог и максимальный эффект усиления за счет ВРМБ соответствуют непрерывному входному излучению, что имеет место в аналоговых сетях КТВ. В результате аналоговые оптоволоконные сети КТВ стали первыми системами, которые столкнулись с действием ВРМБ, уменьшающим уровень сигнала на приемном конце (у клиентского ТВ), что привело к уменьшению коэффициента разветвления полезного сигнала в распределительной сети до 16.

Снижение усиления и соответственно рост порога ВРМБ происходит при цифровой передаче, причем увеличение скорости цифровой передачи также приводит к увеличению порога. Более того, если длительность импульсов накачки (входной последовательности) становится меньше времени жизни акустического фонона (порядка 1 нс), то ВРМБ практически не возникает. Однако эти меры не применимы к аналоговым оптоволоконным сетям КТВ.

Известно, также, что для аналоговых систем (в случае непрерывной накачки) усиление ВРМБ понижается, а его порог повышается, если ширина излучения накачки (входного сигнала) превышает ширину излучения ВРМБ (стоксовой компоненты). Этот факт наталкивает еще на два решения, повышающие порог ВРМБ, — искусственное уширение спектра источника и периодическое изменение центральной частоты излучения источника, так называемый дитеринг (dithering — размывание).

Признавая указанные меры в качестве возможных решений проблемы повышения порога ВРМБ и увеличения тем самым уровня сигнала на выходе клиентского ТВ-приемника, компания Corning предложила свой уникальный метод повышения вдвое порога ВРМБ, разработав специальное волокно NexCor. Созданию такого волокна и его свойствам был посвящен второй доклад Джима Грошинского — "Волокно Corning NexCor".

Автор не раскрывал технологических тонкостей производства волокна, а также того, за счет чего же достигнуто повышение порога ВРМБ, сославшись на коммерческую тайну. Известно, однако, что общий подход при решении проблемы повышения порога за счет кабельной сети состоит в том, что оптический кабель делится на секции, свойства волокна в которых имеют отличия для рассогласования звуковых волн, на которых собственно и происходит дифракция входной волны. Однако строительная длина нового волокна такая же, что и у прототипа стандартного волокна

ЭФФЕКТ ВРМБ

Сущность эффекта ВРМБ (см.: Агравал Г. Нелинейная волоконная оптика. – М.: Мир, 1996) в следующем. Электрическое поле ${\bf E}$ падающей волны ω_p (называемой обычно накачкой) в результате электрострикции создает в оптической среде периодически меняющееся давление ${\bf p}$, пропорциональное коэффициенту электрострикции ${\bf \gamma}$ и ${\bf E}^2$. Это давление ${\bf p}$ вызывает периодическую модуляцию показателя преломления с частотой ω_A , создавая акустическую волну, распространяющуюся со звуковой скоростью ${\bf v}_A$ (акустическая волна эквивалентна брэгговской дифракционной решетке). В результате взаимодействия падающей и акустической волн возникает разностная частота – стоксова волна – ω_s , которая распространяется в противоположном (по отношению к падающей волне) направлении.

Другими словами, динамическая (движущаяся) дифракционная решетка отражает (рассеивает в результате брэгговской дифракции) часть падающей волны, причем частота последней испытывает доплеровский сдвиг в низкочастотную область на величину ω_A , т.е. $\omega_{\rm s}=\omega_{\rm p}-\omega_{\rm A}$. На языке квантовой механики такое рассеяние, вызванное взаимодействием падающей и акустической волн, описывается как аннигиляция фотона накачки (падающей волны) с одновременным появлением стоксова фотона и акустического фонона. Частота $f_A=\omega_A/2\pi$, подсчитанная на основании уравнения брэгговской дисперсии, дает для оптического волокна ($\lambda_{\rm p}=1550$ нм, n=1,45 и $v_A=5,96$ км/с) величину сдвига 11,1 ГГц.

Таблица 2. Основные параметры волокон Corning NexCor и SMF-28e

Параметр	NexCor	SMF-28e	Стандарт ITU-T G.652.D	
Затухание на 1310 нм, дБ/км	0,33-0,35	0,33-0,35	+	
Затухание на 1383 нм, дБ/км	0,31-0,35	0,31-0,35	+	
Затухание на 1490 нм, дБ/км	0,21-0,24	-	Н/д	
Затухание на 1550 нм, дБ/км	0,19-0,20	0,19-0,20	+	
Затухание на 1625 нм (дБ/км)	0,20-0,23	0,20-0,23	+	
Затухание на изгибе 1х32мм для 1550 нм, дБ	≤0,03	≤0,05	+	
Дисперсия 1550 нм, пс/нм/км	≤18	≤18	+	
Дисперсия 1625 нм, пс/нм/км	≤23	≤22	+	
Нулевая дисперсия, нм	1310-1324	1302-1322	+	
Наклон в точке нулевой дисперсии, пс/нм ² /км	≤0,092	≤0,089	+	
Диаметр модового поля на 1310 нм, мкм	9,4±0,4	9,2±0,4	+	
Диаметр модового поля на 1550 нм, мкм	10,6±0,5	10,4±0,5	+	
PMD в линии, пс/√км	≤0,08	≤0,08	+	
Максимальная РМD [пс/√км]	≤0,2	≤0,2	+	
Размеры, влияние окружающей среды, механические свойства	Те же	Те же	+	
Порог ВРМБ, дБ	На 3 дБ выше	Нет		

Corning SMF-28e, следовательно, специальное секционирование не проводится, но можно предположить, что свойства волокна каким-то образом меняются по длине для осуществления требуемого рассогласования звуковых волн.

Сравнение параметров волокон Corning NexCor и SMF-28e приведено в табл.2. В целом же волокно NexCor имеет следующие основные особенности:

- волокно относится к категории стандартных одномодовых ОВ, соответствующих стандарту ITU-T G.652.D;
- оно полностью совместимо с волокном-прототипом Corning SMF-28e и может быть использовано в любой части сети вместо SMF-28e без ухудшения основных параметров;
- волокно может передавать удвоенную (+22 дБм), по сравнению со стандартным ОМ-волокном (+17 дБм), мощность, в системах аналогового ТВ и в ПОС, так как порог ВРМБ в нем повышен тоже в два раза (+3 дБ);
- волокно находится в производстве и полностью сертифицировано (результаты тестирования показали также соответствие стандартам: TIA/EIA-492CAAB, IEC 60793-2-50 (B1.3 Fibers), Telcordia GR-20 (Issue 2).

Указанное волокно, будучи использовано в сетях аналогового КТВ, позволяет увеличить коэффициент разветвления полезного сигнала в распределительной сети с 16 до 32, удвоив тем самым число подключаемых ТВ-клиентов.