ПОЛУЧЕНИЕ ЧЕРЕДУЮЩИХСЯ СЛОЕВ ДИЭЛЕКТРИКОВ НА ОСНОВЕ КРЕМНИЯ В ЕДИНОМ ПРОЦЕССЕ

Одна из важнейших задач при производстве современных полупроводниковых высокочастотных приборов, в частности арсенидгаллиевых полевых транзисторов, - формирование элементов субмикронных размеров. А для ее решения необходимо отработать процесс нанесения в одном вакуумном цикле чередующихся слоев различных диэлектриков. как правило соединений кремния - его нитрида и оксида. Это приводет не только к увеличению производительности, но и к снижению плотности дефектов в осаждаемых пленках. Но зачастую, в частности при нанесении покрытий на пластины арсенида галлия, допустимая температура процесса не должна превышать 300°С. Установка и режимы нанесения высококачественных диэлектрических пленок в одном процессе предложены специалистами НПП "Тирс" (г.Зеленоград).

Обеспечить достаточно высокие адгезию осаждаемой пленки и скорость ее нанесения (1–2 мкм/ч) при достаточно низкой температуре (менее 300°С) позволяет метод реактивного магнетронного нанесения, при котором кремниевая мишень распыляется в смеси аргона и реактивного газа – азота или кислорода [1,2]. Для проведения процесса магнетронного нанесения чередующихся диэлектрических пленок в одном вакуумном цикле была разработана модернизированная установка УВН-71ПЗ. В ее камере вертикально установлен протяженный магнетрон с монокристаллической кремниевой (КЭФ 0,1) мишенью размером 350х100х6 мм³, прижимаемой к водоохлаждаемому основанию. Для питания магнетрона использован блок постоянного тока типа ИВЕ-124 фирмы Consent, который содержит бестрансформаторный преобразователь тока промышленной частоты в ток с частотой 30 кГц. Максимальная мощность блока – 4 кВт, максимальный ток – 8 А.

Подложки кремния или арсенида галлия диаметром 50–100 мм попарно помещаются в кассеты, устанавливаемые на внутренней поверхности барабана диаметром 500 мм и высотой 450 мм. Общая загрузка — 24 пластины. Скорость вращения барабана при нанесении слоев равна 25 об/мин. Кроме магнетрона внутрь барабана вмонтирован протяженный ионный источник типа "Радикал". Его назначение предварительная очистка подложек пучком ионов кислорода при токе 300 мА в течение 3 мин. Перед нанесением слоев подложки нагреваются излучением четырех ламп КГ-220-1000 до температуры 250°С.

Газы (аргон, азот и кислород) подаются в камеру через газораспределительную систему ионного источника. Их поток задается реЕ.Берлин, А.Воробьев, Л.Сейдман

гуляторами расхода газов с помощью блока управления подачей газов типа PPГ-9-2,5. Вакуумная камера откачивается диффузионным насосом H-2T с азотной ловушкой на входе и механическим насосом НВПР-16-066. На входе диффузионного насоса для согласования скорости его откачки с производительностью механического насоса установлена диафрагма, что снижает эффективную скорость откачки камеры до 0,3 м³/с.

Для определения зависимостей параметров процесса снимались вольт-амперные характеристики (ВАХ) разрядов в различных газовых средах (рис.1). Первая ВАХ была получена для разряда в среде аргона при его потоке в камеру 0,026 Вт. Она представляет собой типичную для нереактивного разряда монотонную кривую, описываемую уравнением

 $I = a \cdot U^b$,

где I – ток разряда в амперах, U – напряжение разряда в вольтах, $a = 2 \cdot 10^{-15}$ – коэффициент пропорциональности и b = 6 – показатель степени.

Показатель степени характеризует силу магнитного поля магнетрона, удерживающего электроны у поверхности подложки. Его сравнительно небольшое значение в данном случае говорит о том, что магнитное поле ослаблено из-за большой суммарной толщины мишени и ее основания. Толщину мишени можно уменьшить, но при этом сократится срок ее службы и коэффициент использования.

Вторая ВАХ соответствует разряду в среде, в которой к аргону добавлен поток кислорода 0,032 Вт. Она имеет типичный для реактивных процессов N-образный вид [1-3]. Как известно, для получения устойчивых режимов таких разрядов необходимо применять источник питания магнетрона со стабилизированным напряжением [4], что и было сделано во всех последующих экспериментах. И, наконец, третья ВАХ получена при том же потоке аргона и потоке азота 0,023 Вт. Ее монотонный, а не обычный N-образный, характер свидетельствует о том, что скорость поглощения азота пленкой много меньше скорости поглощения кислорода и сравнима со скоростью откачки камеры.

На рис.1 хорошо видно, что напряжение реактивных разрядов значительно меньше, чем у нереактивного разряда. Для получения интересующих нас соединений рабочий диапазон напряжений составляет 400–550 В, что необходимо учитывать при выборе источника питания. В обоих случаях чем выше напряжение разряда, тем больше скорость осаждения, но и больше концентрация атомов кремния в слоях. Для нахождения оптимальных параметров процесса использовалась компьютерная модель реактивного процесса, построенная на основе модели Берга [5]. Такая модель позволяет вычислять все параметры, в частности степень покрытия поверхно-

<u>Рис.1. Экспериментальные вольт-амперные характеристики</u> разрядов магнетрона с кремниевой мишенью

<u>Рис.2. Расчетные вольт-амперные характеристики магнетронного</u> <u>разряда</u>

<u>Рис.3. Расчетные вольт-амперные характеристики магнетронного</u> <u>разряда</u>

сти мишени диэлектриком – θ , что в свою очередь позволяет вывести зависимости ВАХ реактивного разряда вида

 $I = a \cdot U^{b+c \cdot \theta},$

где *с* – коэффициент пропорциональности, зависящий от коэффициента вторичной электронной эмиссии диэлектрика (для нитрида

c = 0,55, для оксида – 0,9). Результаты расчета ВАХ приведены на рис.2 и 3. Их достаточно хорошее совпадение с экспериментальными данными (см. рис.1) говорит о правильности используемой модели. Это позволило сократить число дальнейших экспериментов по определению взаимозависимостей параметров процесса при фиксированном напряжении разряда.

Зависимости скорости поглощения реактивного газа (f_{μ}) растущими пленками оксида кремния и нитрида кремния сильно отличаются друг от друга (рис.4 и 5). При осаждении нитрида кремния с увеличением тока f₁₁ сначала растет, проходит через максимум и затем снижается. Но даже в максимуме f_{II} не превышает 0,8 м³/с. При осаждении оксида кремния в тех же условиях f_{II} уменьшается со значения более 50 м³/с при малых потоках кислорода до 5 м³/с при получении стехиометрического соединения. Это подтверждает данное выше объяснение различия ВАХ обоих разрядов.

Остальные свойства разряда в обоих реактивных газах идентичны. Зависимости тока разряда от потока реактивного газа в вакуумную камеру для кислорода и азота практически линейные (рис.6 и 7), т. е. ток разряда может служить мерой потока реактивного газа. Зависимости скорости роста от тока разряда в обоих случаях монотонные и почти линейные (рис.8 и 9). Никаких спонтанных переходов между различными состояниями разряда не наблюдается, и все режимы стабильны. Состав пленок, выраженный как отношение числа

<u>Рис.4. Скорость поглощения</u> азота растущей пленкой нитрида кремния

<u>Рис.5. Скорость поглощения кислорода растущей пленкой оксида</u> кремния

<u>Рис.6. Зависимость тока разряда</u> от потока азота в камеру при постоянном напряжении разряда

<u>Рис.7. Зависимость тока разряда</u> от потока кислорода в камеру при постоянном напряжении разряда

атомов кремния в пленке к числу атомов газа, зависит от тока разряда (рис.10 и 11). Зависимости, как и в предыдущих случаях, монотонные. Чем больше поток реактивного газа, тем больше ток разряда и тем ближе состав пленки к стехиометрическому. Из этих графиков можно определить режимы, необходимые для получения прозрачных и бесцветных пленок нитрида кремния и его оксида с близким к стехиометрическому составом (см.табл.).

Найденные экспериментально режимы были использованы для нанесения пленок на пластины арсенида галлия с приборными

НОВЫЕ ТЕХНОЛОГИИ

Расчетные и полученные экспериментальным путем режимы нанесения стехнометрических пленок нитрида кремния и оксида кремния

стехножегрических пленек пигрида кремних и оксида кремних								
Соеди- нение	Напряжение разряда,В		Ток разряда в смеси газов, А		Поток реактив- ного газа, Вт		Скорость нане- сения, мкм/ч	
	Расчет-	Экспе-	Расчет-	Экспе-	Расчет-	Экспе-	Расчет-	Экспе-
	ное	рим.	ное	рим.	ное	рим.	ное	рим.
Нитрид кремния	510	500	6	6	0,03	0,025	1,2	1,26
Оксид	500	520	5,5	5	0,04	0,037	1,44	1,35

структурами. Одна из важнейших технологических задач, которую необходимо было решить при создании арсенидгаллиевого полевого ВЧ-транзистора, - формирование электрода затвора субмикронного размера, расположенного точно в середине канавки шириной 1,5-2 мкм. Размер затвора и точность его совмещения с канавкой существенно влияют на коэффициент усиления по мощности и пробивное напряжение затвора. Наилучшие результаты были получены при использовании технологии самосовмещения электрода затвора с канавкой, предусматривающей нанесение двухслойного диэлектрического покрытия SiO₂ и Si₃N₄ и его селективное травление. По этой технологии в верхнем слое нитрида кремния методами электронной литографии и ионного травления формировали окна. соответствующие по размерам электроду затвора - 1,5-2 мкм. Затем такие же окна формировали химическим травлением в слое оксида кремния. Благодаря изотропности химического травления эти окна были точно совмещены с окнами в слое нитрида кремния. В полученной таким образом структуре сначала вытравливали канавку, а затем напылением формировали электрод затвора. Диэлектрические слои в такой самосовмещенной структуре должны отвечать следующим требованиям: хорошая адгезия к подложке и между слоя-

Рис.8. Зависимость скорости роста пленки нитрида от тока разряда

<u>Рис.10. Зависимость состава</u> пленки нитрида кремния от тока разряда. Пунктиром отмечен стехиометрический состав пленки

Рис.11. Зависимость состава пленки оксида кремния от тока разряда

2 3 4 5

Ι_U(x), Α

ми, низкая плотность объемного заряда, низкий уровень механических напряжений и отсутствие посторонних примесей. Всем этим требованиям отвечали нанесенные в соответствии с определенными выше режимами слои нитрида кремния и его оксида.

Таким образом, собранная и сданная в эксплуатацию вакуумная напылительная установка для нанесения многослойных диэлектриков на основе кремния пригодна для осаждения пленок кремния, его оксида и нитрида в любой комбинации. Скорость нанесения диэлектриков составляет не менее 1,2 мкм/ч на вращающуюся подложку и 12 мкм/ч на неподвижную. Температура подложек во время нанесения пленок не превышала 300°С.

Полученные пленки диэлектриков были использованы при формировании самосовмещенного с канавкой шириной 1,5–2 мкм субмикронного электрода затвора арсенидгаллиевого полевого ВЧ-транзистора.

ЛИТЕРАТУРА

 Сейдман Л.А., Фомичев В.Н. Новое применение установки "Оратория-5": нанесение диэлектриков на крупноформатные подложки. – Электронная промышленность, 1990, вып. 3, с. 60–61.
Сейдман Л.А., Спектор А.А. Низкотемпературное нанесение пленок двуокиси кремния. - Электронная промышленность, 1988, вып. 7, с. 13–14.

3. **Ohsaki E. et al.** High-rate deposition of SiO₂ by modulated DC reactive sputtering in the transition mode without a feedback system. – Thin Solid Film, 1996, № 281–282, p. 213–217.

4. Сейдман Л.А. Способы управления процессом реактивного магнетронного распыления с помощью вольтамперных характеристик разряда. – Труды постоянно действующего семинара "Электровакуумная техника и технология"/ Под ред. А.В.Горина, Москва, 1999, 168 с.

5. **Berg S. et al.** Computer modeling as a tool to predict deposition rate and film composition in reactive sputtering process. – J. Vac. Sci. Technol. A, 1998, vol. 16, № 3, p. 1277-1285.