ШИРОКОЗОННЫЕ ГЕТЕРОСТРУКТУРЫ (Al,Ga,In)N И ПРИБОРЫ НА ИХ ОСНОВЕ ДЛЯ МИЛЛИМЕТРОВОГО ДИАПАЗОНА ДЛИН ВОЛН

Ю.Федоров yuraf2002@mail.ru Институт СВЧ полупроводниковой электроники РАН

Полупроводниковые приборы на основе широкозонных соединений нитридов достаточно давно привлекают внимание разработчиков всего мира. Действительно, приборы на основе GaN-гетероструктур обещали уникальное сочетание мощностных и частотных характеристик. И эти надежды отчасти начали сбываться – GaN-транзисторы и монолитные интегральные схемы на их основе уже производятся серийно. Но камнем преткновения оставались высокие частоты, прежде всего – в миллиметровом диапазоне длин волн. Однако в последние годы, судя по многочисленным публикациям, и эта проблема преодолена. И вскоре ведущие мировые производители приступят к производству СВЧ-приборов на основе широкозонных гетероструктур (Al,Ga,In)N для работы в миллиметровом диапазоне. По сути, это означает новую эру в полупроводниковой СВЧ-электронике, поскольку открывает поистине фантастические возможности.

ранзисторы на основе широкозонных гетероструктур AlGaN/GaN (НЕМТ) чрезвычайно привлекательны для применения в мощных передающих СВЧ-устройствах ввиду их очевидных преимуществ перед узкозонными полупроводниками (табл.1). Это было убедительно продемонстрировано в предыдущие годы на примерах усилителей мощности L-, S- и X-диапазонов (рис.1). Основное преимущество AlGaN/GaN HEMT – высокая удельная мощность (>10 Вт/мм в X-диапазоне [1]), что позволяет существенно упростить топологию монолитных интегральных схем (МИС) усилителей мощности, повысить эффективность и массо-габаритные параметры.

Проанализируем развитие работ в мире в данной области за последние годы с акцентом на совершенствовании гетероструктур и технологии.

ПРИНЦИП ФОРМИРОВАНИЯ ДВУМЕРНОГО ГАЗА В ГЕТЕРОСТРУКТУРАХ (Al, Ga, In)N

Физический эффект, который определяет формирование двумерного электронного газа (2DEG) на границе раздела гетероструктур на основе соединений (Al, Ga, In)N, – их полярная природа. Все выращенные высококачественные полупроводники такого состава оказываются полярными в результате спонтанной поляризации P_{sp}. Кроме того, из-за несоответствия периодов кристаллических решеток на границах раздела гетероструктур возникают тангенциальные напряжения, которые приводят к дополнительной пьезоэлектрической поляризации P_{zp} (рис.2).

В гетероструктурах AlGaN/GaN полярная природа GaN и AlGaN приводит к их спонтанной поляризации P_{sp} уже в процессе роста. Кроме того, из-за тангенциальных растягивающих напряжений на границе раздела Al_xGa_(1-x)N/GaN до-

Материал	Подвижность, см²/(В·с)	Диэлектрическая проницаемость	Ширина запрещенной зоны, эВ	BFOM* относительно BFOM Si	JFOM ^{**} относи- тельно JFOM Si	Макси- мальная рабочая температура, °С
Si	1300	11,4	1,1	1,0	1,0	300
GaAs	5000	13,1	1,4	9,6	3,5	300
SiC	260	9,7	2,9	3,1	60	600
GaN	1500	9,5	3,4	24,6	80	700

Таблица 1. Сравнительная характеристика некоторых полупроводниковых материалов.

ВFOM – критерий Балига (Baliga's figure of merit) BFOM = εμ E_g³, где ε – диэлектрическая постоянная полупроводника, ·μ– подвижность носителей, E_g – ширина запрещенной зоны.

** JFOM – критерий Джонсона (Johnson's figure of merit) JFOM = E_b·V_{sat}/2π = 2F_t·U_b/α, где E_b и U_b – напряженность поля пробоя в канале и напряжение пробоя, v_{sat} – скорость насыщения носителей в канале, F_t – частота отсечки по току, α – безразмерный коэффициент.

полнительно возникает пьезоэлектрическая поляризация P_{pz}. В итоге генерация положительных зарядов на границе раздела Al_xGa_(1-x)N/GaN (рис.3) может быть представлена выражением:

$$P(\mathbf{x}) = \mathbf{P}_{zp} + \mathbf{P}_{sp} = -[(3, 2\mathbf{x} - 1, 9\mathbf{x}^2) \cdot 10^{-6} - 5, 2 \cdot 10^{-6}\mathbf{x}] [K\pi/cm^2].$$
(1)

В гетероструктурах InGaN/GaN, напротив, при выращивании слоя In_xGa_(1-x)N/GaN возникают сжимающие напряжения, которые приводят к генерации зарядов противоположного знака (рис.4), концентрация которых определяется выражением:

$$P(\mathbf{x}) = \mathbf{P}_{zp} + \mathbf{P}_{sp} = (14, 1\mathbf{x} + 4, 9\mathbf{x}^2) \cdot 10^{-6} - 0, 3 \cdot 10^{-6} \mathbf{x}] [K\pi/cm^2].$$
(2)

Таким образом, комбинируя элементы Al, Ga и In в соединении с N в процессе роста гетероструктур (Al,Ga,In)N/GaN и формируя таким образом слои с различным составом и свойствами, можно уп-

равлять концентрацией образующегося двумерного электронного газа на границе раздела с самым узкозонным материалом – обычно это GaN. Такой подход открывает широкие возможности для конструирования и оптимизации гетероструктур под конкретные прикладные задачи.

ГЕТЕРОСТРУКТУРЫ AlGaN/GaN (ТИП I)

Гетероструктуры AlGaN/GaN наиболее просты для эпитаксиального роста, поэтому их освоили в первую очередь (рис.5). Величина разрыва зон ΔE_c для типичных гетероструктур состава Al_{0.3}Ga_{0.7}N/GaN составляет ~0,6 эВ. При этом концентрацию электронов n_s двумерного электронного газа (2DEG) можно оценить как [2]:

$$n_{\rm s} = \frac{\sigma_{\rm AlGaN} \cdot t_{\rm AlGaN} - \frac{\epsilon \epsilon_{\rm o}}{q} \phi_{\rm B} + \frac{\epsilon \epsilon_{\rm o}}{q^2} \Delta E_{\rm C,AlGaN}}{t_{\rm AlGaN} + d_{\rm o}}, \qquad (3)$$

где t_{AlGaN} – толщина барьерного слоя, d₀ – расстояние от гетерограницы до центроида двумерного газа, σ_{AlGaN} – поверхностная плотность поляризационных зарядов на границе раздела (равна P(x) в формуле (1)), $\phi_{\rm B}$ – потенциал на поверхности (зависит от напряжения на затворе).

Приведенное выражение показывает сущность работы транзистора - изменение напряжения на затворе приводит к управлению концентрацией электронов в канале транзистора.

Рис.1. Динамика развития мощных приборов на основе AlGaN/GaN HEMT [1]

Рис.2. Направления тангенциальных напряжений и характеристики пьезоэлектрической поляризации на гетерограницах AIN/GaN и InN/GaN

К сожалению, нет подложек, точно согласованных по периоду решетки с GaN, поэтому необходимо выращивать сложные по составу пере-

ходные слои, качество которых во многом определяет параметры дальнейшей структуры, ее дефектность и свойства электронного газа. Как правило, переходные слои содержат один или несколько низкотемпературных прослоек AlN, выращиваемых на зародышевом слое GaN, для уменьшения дефектности последующего буферного слоя GaN [3].

Вариации параметров гетероструктур типа AlGaN/GaN сводятся в основном к вариациям толщины барьерного слоя и содержания в нем Al. Как правило, мольная доля Al изменяется от 0,24 до 0,35, а толщина – в пределах 20–27 нм (табл.2). Концентрация электронов 2DEG составляет (0,9–1,1)·10¹³ см⁻² при подвижности около 1500 см²/ (В·с). Не усложняя существенно ростовый процесс, простую ге-

Рис.3. Принцип образования индуцированного заряда на границе раздела AlGaN/GaN

Рис.4. Принцип образования индуцированного заряда на границе раздела InGaN/GaN

тероструктуру можно улучшить, формируя сарслой GaN (легированный или нелегированный) толщиной порядка 2 нм для улучшения контактного сопротивления [8, 10]. Эффективно и легирование части барьерного слоя кремнием ($N_{si} = (0,5-5)\cdot10^{19}$ см⁻³) [11] для повышения концентрации электронов в канале (в частности, за счет снижения напряжений из-за рассогласования решеток AlGaN/GaN). Выращиванию подобных гетероструктур, изготовлению и исследованию приборов на их основе посвящено множество работ. Некоторые из полученных в последние годы ре-

Рис.5. Базовая структура НЕМТ AlGaN/GaN (а) и его зонная диаграмма (б) [1]

Рис.6. Зонная диаграмма гетероструктуры Al_xGa_(1-x)N/AlN/GaN (а) и зависимость параметров 2DEG от толщин и состава ее слоев: б – зависимость концентрации 2DEG от содержания Al в барьерном слое Al_xGa_(1-x)N; в – от толщины барьерного слоя Al_{0,37}Ga_{0,63}N; г – зависимость концентрации и подвижности 2DEG от толщины слоя AlN

зультатов, имеющие отношение к КВЧ-диапазону, приведены в табл.2.

Обращает внимание сравнительно невысокая крутизна транзисторов (100–240 мСм/мм) и низкое усиление в КВЧ-диапазоне, несмотря на достаточно высокие значения F_t и F_{max} (в диапазоне частот 30–40 ГГц максимально возможное усиление (MaxGain) изменяется примерно от 8 до 4,5 дБ [12]). Видимо поэтому большинство работ с такими гетероструктурами ограничивается созданием и исследованием приборов в диапазоне частот до 10 ГГц, где достигнуты очень высокие параметры транзисторов и МИС усилителей мощности (см., например, [13]), а также решением проблемы ловушек на гетерограницах (задержка времени включения транзисторов, lag-эффект) [4].

Особняком стоят работы [5, 9], где получены впечатляющие параметры (см. табл.2) транзисторов на частотах 20, 30 и 35 ГГц – так, крутизна транзисторов увеличена до 285 [5] и 275 мСм/мм [9]. Детали технологии и состава гетероструктур, способствовавшие повышению крутизны, не сообщаются, возможно, использовалась техника заглубления затвора с помощью плазмохимического травления подзатворной канавки в барьере AlGaN.

Однако дальнейшее повышение рабочих частот НЕМТ на традиционных гетероструктурах невозможно из-за короткоканальных эффектов. В работе [14] было показано, что для предотвращения короткоканальных эффектов в AlGaN/GaN HEMT требуется выдержать соотношение длины канала L_g к толщине барьерного слоя L_g/t_{AlGaN} > 15. Это требование в три раза более жесткое, чем в случае рНЕМТ на GaAs (L_g/t_{AlGaAs}>5). С другой стороны, при t_{AlGaN}<15 нм происходит резкое снижение концентрации 2DEG [15] (см., например, рис.6б). Следовательно, для предотвращения короткоканальных эффектов в обычных гетероструктурах AlGaN/GaN с t_{AlGaN}=15 нм длина затвора должна быть больше 225 нм. В реальности - еще больше, поскольку на практике, как видно из табл.2, толщина барьера находится в диапазоне 20-27 нм.

Из сказанного следует, что

HEMT на традиционных гетероструктурах AlGaN/ GaN не могут быть использованы для создания эффективных приборов миллиметрового диапазона длинн волн. Для преодоления данного ограничения были предложены новые типы гетероструктур.

ГЕТЕРОСТРУКТУРЫ AlGaN/AlN/GaN (ТИП II)

Дальнейший прогресс в развитии гетероструктур (Al,Ga)N связан с введением тонкого барьера AlN между каналом GaN и барьерным слоем AlGaN (рис.6). Влияние такой модификации гетероструктуры было подробно исследовано в работе [16] (см. также [2, 17-19]). Было показано, что сильный поляризационный эффект от введения барьерной прослойки AlN толщиной не более 3,5 нм приводит к возрастанию концентрации электронов 2DEG до $n_s = 3,6\cdot10^{13}$ см⁻², что сопровождается снижением слоевого сопротивления гетероструктуры до 180 Ом/. Это является результатом не только повышения концентрации n_s, но и значительного повышения подвижности электронов μ_{e} до 2200 см²/(В·с). Однако дальнейшее выращивание контактного слоя GaN над барьерным слоем AlN/GaN приводит к значительному снижению n_s [2]. В результате исследований была найдена компромиссная гетероструктура вида $Al_{0,37}Ga_{0,63}N/AlN/GaN$ с толщиной прослойки AlN всего 1 нм, у которой $n_S = 2,15\cdot10^{13}$ см², $\mu_e = 1500$ см²/(В·с) и R = 194 Ом/ \Box . Параметры оптимальной гетероструктуры с прослойкой AlN значительно превосходят параметры обычных гетероструктур. В частности, для гетероструктуры AlGaN/AlN/GaN возрастает концентрация электронов n_S 2DEG по сравнению с обычной гетероструктурой:

$$n_{s} = \frac{\sigma_{AlGaN} \cdot t_{AlGaN} + \sigma_{AlN} \cdot t_{AlN} - \frac{\varepsilon \varepsilon_{o}}{q} (\phi_{B} - \frac{\Delta E_{C,AlGaN}}{q})}{t_{AlGaN} + t_{AlN} + d_{o}} .$$
(4)

Графически основные закономерности формирования 2DEG в гетероструктурах AlGaN/AlN/GaN показаны на рис.6 [2]. В дальнейшем подобные исследования были повторены во многих работах (например, [20]) и легли в основу создания нового стандарта гетероструктур более совершенных приборов, быстро освоенных промышленностью, в том числе – миллиметрового диапазона длин волн. В качестве примера приведем НЕМТ-структуру компании Сгее – одного из мировых лидеров в разработке и производстве приборов миллиметрового диапазона на широкозонных полупроводниках AlGaN/GaN (рис.7).

Другой пример – AlGaN/AlN/GaN НЕМТ миллиметрового диапазона, с рекордными параметрами, представленный фирмой NORTHROP GRUM-MAN (США) на RFIC-симпозиуме 4 июня 2007 года (рис.8) [21]. Транзисторы состоят из восьми секций по 62,5 мкм (ширина W_g =500 мкм), длина затворов – L_g = 0,2 мкм. Удельная выходная мощность достигает 4,2 Вт/мм (при РАЕ 36,7% и K_p = 8,3 дБ) и даже 5 Вт/мм (при РАЕ 43,7% и K_p = 7 дБ) в зависимости от режима работы транзистора.

Кроме того, достигнуты частотные параметры AlGaN/AlN/GaN HEMT, превосходящие рекордные параметры pHEMT на GaAs (рис.9), а именно F_t = 163 ГГц, F_{max} = 185 ГГц.

В табл.3 представлены результаты некоторых работ, в которых были применены гетероструктуры с прослойкой AlN (1 нм), в том числе и на подложках из синтетического алмаза и кремния [24]. Видно, что введение AlN в первую очередь привело к существенному возрастанию крутизны транзисторов вплоть до 501 мСм/мм (!) [25], начального (максимального) тока транзисторов до 1000 (1200) мА/мм при одновременном уменьшении напряжения отсечки до -2...-3 В. Другими словами, тонкий барьер AlN (1 нм) позволил снизить толщину барьерного слоя AlGaN, тем самым сократив расстояние от затвора до канала HEMT, что и привело к повышению

Рис.7. Структура Al_xGa_(1-x)N/AIN/GaN/SiC НЕМТ фирмы Cree (а) и влияние прослойки AIN на его параметры в зависимости от мольной доли Х_{AI} в барьерном слое (б)

Рис.8. Рекордные (на 2007 год) мощностные параметры AlGaN/AlN/GaN HEMT мм-диапазона на частоте 40 ГГц (U_{ds} = 28 B) фирмы NORTHROP GRUMMAN [21]

Рис.9. Рекордные частотные параметры AlGaN/AlN/GaN HEMT с L_g =90 нм, полученные в рамках программы ONR MINE MURI при UCSB [21, 51]

крутизны (уменьшению напряжения отсечки) с сохранением или даже повышением рабочих токов транзисторов. Результат – улучшение СВЧ-параметров НЕМТ в области частот 30-40 ГГц, что позволило создать полноценные одно- и двухкаскадные усилители с высокой выходной мощностью [21, 25, 26].

Следует отметить разновидность приборов с более толстым слоем AlN [2], доходящим до 3 нм [20], 3,5 нм [22], 4 нм [29] и даже до 5 нм [30]. Такие гетероструктуры обычно выращиваются методом молекулярно-лучевой эпитаксии (МЛЭ) – из-за большой температуры ростового процесса газофазная эпитаксия (MOCVD) слоя AlN толщиной более 4 нм, как правило, приводит к его отслаиванию от GaN в результате больших тангенциальных напряжений, вызванных существенным несоответствием периодов решетки. Кроме того, подобные гетероструктуры нуждаются в эффективной пассивации, желательно - непосредственно в ростовой камере. Наиболее эффективна пассивация посредством Al₂O₃ [30], который можно получить осаждением нескольких слоев Al с их последующим прокислением, например в озоне [22].

Статические (G_m > 480 мСм/мм, плотность тока сток-исток I_{dss} > 2 А/мм) и частотные (F_t >100 ГГц [31]) параметры таких приборов весьма высоки, поскольку достигается высокая концентрация (до 3,5·10¹³ см⁻² [29]) и подвижность (до 1800 см²/(В·с) [22]) электронного газа при очень малом расстоянии от затвора до канала (3-4 нм) [20, 22, 29-32]. Такие гетероструктуры считаются пригодными для создания приборов диапазона частот 100-300 ГГц. Однако им присущ ряд недостатков, наиболее существенный из которых - высокое спротивление омических контактов, свыше 0,4 Ом мм [20] из-за высокого потенциального барьера и слишком толстого слоя AlN (3-4 нм). Для снижения омического сопротивления предлагается технология вытравливания верхнего слоя AlN в области омических контактов с последующим заращиванием слоями (сверху вниз) In**N/InGaN/GaN, что** снижает удельное сопротивление до 0,2 Ом·мм [32]. Однако такая технология вряд ли найдет промыш-

Рис.10. Параметры решеток InN, AIN, GaN и In_{0.17}Al_{0.83}N (а), а также зонная диаграмма HEMT на основе InAIN/ GaN гетероструктуры (б) [35а]

Рис.11. Концентрация электронов в HEMT InAIN/(AIN)/ GaN в зависимости от толщины и состава слоя InAIN [35] **Таблица 2.** Параметры некоторых гетероструктур AlGaN/GaN (типа I) для миллиметрового диапазона и характеристики изготовленных на них приборов

	PAE, %	60	44	33	I	40	I	16	20
араметры	Максимальная удельная мощность, Вт/мм	3,6 (4 ГГц) при Кр=l0,5 дБ	5,68 (30 ГГц) при Кр=7,1 дБ	4,13 (35 ГГц) при Кр=5,4 дБ	ı	9,4 (10 ГГЦ) при Кр=11,3 дБ	3,2 (при 6 дБ комп- рессии на 6 ГГц)	6,4 (20 ΓΓι ₁)	4 (30 FFL)
СВЧ-п	Усиле- ние, дБ	ו4 (4 ררע)	9,17 (30 ГГц)	7,54 (35 ГГц)	11,7 (12 ררц)	14	17,5-10 (6 Г Гц)	I	I
	F Frax. Fru	60	, c	δ 4	140	I	75	CE	2
	ي ت	30	40-	44	100	I	35	L V	0
етры	Крутизна G _m , мСм/мм	100	L	582	212	220	240	77E	C/7
ские парами	Напря- жение отсечки, В	Ľ-	L T T	د/,٤-	-4,5	-5,2	-4		I
Статиче	Удельный ток сток- и сток l _{dss} (макси- мальный ток стока I _{dmax}), мА/ММ		010	(1100)	750 (920)	(1100)	760 (1050)	נטטנו)	
погия наис- ров	Lg. MKM	0,27	L	<i>خ</i> 2,0	0,18	0,15	0,3	JC O	c7'D
Топо. тран тој	Wg. MKM	80	C	4×50	100	2×75	6× 100		
	Под- ложка	Сапфир		4H-SIC	Сапфир	GaN, легиро- ванная Fe	Сапфир	L.	
руктур	Буфер	GaN 1 MKM	GaN/ AIN	2/0,2 МКМ	GaN 2 MKM	GaN 100 нм	GaN 2 MKM		
оев гетерост	Спейсер				-	н Ч Ч			
Параметры сл.	Барьерный слой	АІ _{0,3} Gа _{0,7} N, 20–25 нм	Alose Gaose N,	23 HM 23	Al _{0,35} Ga _{0,65} N, 25 нм	Al _{0,28} Ga _{0,72} N, 27 нм	Al _{0,25} Ga _{0,75} N, 20 нм		
	Сар-слой	Нет		Нет	Нет	Нет	GaN 2HM	F C	- - - -

4

[2]

[9]

8

Источник

6

Таблица 3. Параметры гетероструктур AlGaN/AIN/GaN (тип II) и характеристики изготовленных на них приборов

						Тополо	ГИЯ								
ИСТОЧНИК	парал	ארו אשר האו	эструктур			транзи	сторов	Статические пар	аметры		свч-парал	иетры			
	Сар- слой	Барьерный слой	Спейсер (барьер)	Буфер	Под- ложка	Wg, MKM	L _g , мкм	Удельный ток сток-исток I _{dss} (макси- мальный ток стока I _{dmax}), мА/мм	Напря- жение отсечки, В	Крутизна G _m , мСм/ мм	F, LLL	F _{max} , ГГЦ	Усиле- Ние, дБ	Макси- мальная удельная мощность, Вт/мм	PAE, %
[22]	АІ ₂ О ₃ 3 нм	1	AIN 3,5 HM	GaN, легиро- ванный Fe	Сапфир	60	0,25	2350 (2400)	~	480	52	60	1	1	
[23]	GaN 2 HM	Al _{0,25} Ga _{0,75} N	AIN	GaN	siC	200	0,4 FP**	1000 (1200)	-3,5 -5,5 (МДП)	320 260 (МДП)	– 30 (МДП)	- 60 (МДП)	9 дБ (8 ГГц)	6,1 (8 ГГц) при Кр = 7,8 дБ	40,3
							0,15 Г***, FP	591±9 (786±16)	-2,0±0,1	346 ±7	48 ±0,6	1	1	1	1
	GaN	Alo 26 Gao 20 N 17 5	AIN.	Слаболеги- рованный	Алмаз	7×100	0,1 F, FP	604±32 (797±32)	-2,1 ±0,1	355 ±11	57 ±2,2	I	1	4,1 (10 FFц)	48
[24]	2 HM	WH	МНГ	Gan 0,8 mkm, AlGaN 1,1 mkm,		C L C	0,06	636 (685)	-3,2	250	T,07	1	1	1	I
				GaN 20 нм		NCX7	0,04	I	I	I	85	95	I	I	I
					Si	2×50	0,06	580 (618)	-3,2	240	55,1	I	I	I	I
[25]	GaN	Al _{0,315} Ga _{0,685} N	AIN	GaN на AIN	siC	4×50	0,25	1200 (1400)	-3	501 (-2,5 B)	I	I	5,6–6,7 (35 ГГЦ)	4,5 (35 ГГц) при Кр=6,7 дБ	51
						100	0,15-0,18 FP	I	I	I	60	120	6 (40 ГГц)	8,6 (40 ГГц) при Кр=4,1 дБ	34
[26]	SiN	AlGaN 22 hm	AIN	GaN, легиро- ванный Fe 2–4 мкм	SiC	1050	0,15- 0,18 FP	Двухкаскадный	усилитель				Q	5,4 (30 ГГц) при Кр=6 дБ, 5,2 (35 ГГц) при Кр=5 дБ	33
						1500	0,15-0,18 FP	Однокаскадный	усилитель				9	8,05 (30 ГГц) при Кр=4,1 дБ	31
[حر]	SiN	Aln 3Gan 7N,		GaN	4 1 1 1	100	0,2	500 (без SiN)	-3,97	160	24	68	I	1	I
[/7]	CI-C'C	22–24 HM		2,6 мкм	санфир	100	0,2	1200 (SiN, 15 HM)	-8,45	195	40	80	I	1	I
[28]	Al ₂ O ₃ < 1 HM	Нет	АIN 3,5 нм	GaN	Сапфир, SiC	200	0,4	(1300)	4-	>300	19,6	30,9	I	I	I
* Bce cn	ои выра	зщены методом Мо	OVPE in-situ]

МДП - затвор отделен от полупроводника тонким слоем диэлектрика.

FP - затвор с полевым электродом.

Г - Г-образный затвор.

0000 0000

Рис.12. Повышения подвижности носителей в 2DEG в гетероструктуре InAlN/AlN/GaN за счет введения слоя AlGaN (5 нм) между InAlN и AlN [37]

ленное применение, поскольку технологическая реализация данных процедур достаточно сложна.

ПЕРСПЕКТИВНЫЕ ГЕТЕРОСТРУКТУРЫ InGaN/(In)GaN (ТИП III)

В 2001 году молодой словацкий ученый Ян Кузмик (Jan Kuzmik) предложил идею замены гетероструктуры типа AlGaN/GaN, традиционной для HEMT на GaN, на новую гетероструктуру InGaN/(In)GaN [33, 34]. Эта публикация вызвала огромный отклик среди ученых и стимулировала многочисленные исследования в данном направлении, поскольку открывала колоссальные перспективы в развитии приборов на широкозонных полупроводниках, которые называют часто даже революционными.

Под ее влиянием, в частности, была принята Европейская программа UltraGaN (www.ultragan. eu), которая ставит следующие задачи:

- развитие и технологическое освоение приборов на основе гетероструктур InAlN/(In)GaN;
- полная замена обычных гетероструктур AlGaN/GaN;
- создание НЕМТ со следующими параметрами: плотность 2ДЕГ n_{total} > 3,7·10¹³ см⁻²; ток стока > 3 А/мм; пробивное напряжение сток-исток >200 В; достижимая плотность мощности >30 Вт/мм на 10 ГГц при отсутствии коллапса тока стока.

Цель проекта – усиление позиций Европы на коммерческом рынке и доли интеллектуальных прав в области нитридной технологии. В частности, из 100 патентов в данной области только девять европейских, в то время как 46% патентообладателей – из Японии, 24% – из США, 11% – из Южной Кореи. Особо подчеркивается, что уникальные параметры InAlN/(In)GaN гетероструктур позволят преодолеть существующий барьер в создании приборов терагерцового диапазона на широкозонных полупроводниках.

Основные особенности формирования 2DEG в HEMT-гетероструктуре InAlN/(AlN)/GaN показаны на рис. 10 и 11. Важно отметить, что при содержании X_{In}=17% в барьерном слое In_xAl_(1-x)N его период решетки совпадает с GaN. В гетероструктурах с прослойкой AlN мольная доля X_{In} обычно повышается до 19% для компенсации напряжений от слоя AlN. Ожидается, что отсутствие напряжений между слоями может существенно расширить диапазон рабочих температур, надежность и долговечность приборов на таких гетероструктурах.

В период до 2007 года, судя по публикациям, данные работы развивались в основном усилиями двух научных групп по программе UltraGan, возглавляемых Яном Кузмиком (Словацкая Академия наук, SAS) и Фаридом Медждоубом (Farid

Рис 13. НЕМТ In0,19AI0,81N/(AIN)/GaN на стенде при высокотемпературных измерениях в вакууме при T=1000°C (а) и его вольт-амперные характеристики (BAX) при температурах 25, 600 и 800°C (б) и при 1000°C (в)

Производитель	А					В		С	
Длина канала, нм	150	150	150	125	125	150	150	125	125
Толщина барьера, нм	11	12,5	13,4	11,6	12	12	14	12	12
Доля In, %	2	2	2	2	2	9	9	5	5
Доля AI, %	58	58	58	73	73	86	86	68	68
Доля Ga, %	40	40	40	25	25	5	5	27	27
Усредненные статические и ма	лосигнал	тьные пар	аметры						
Сопротивление омического контакта, Ом·мм	0,43	0,334	0,345	0,256	0,238	3,27	6,61	0,47	0,298
Слоевое сопротивление, Ом/ 🗆	317,0	307,1	346,7	232,9	229,6	649,3	284,1	399,0	338,4
, ГГц	46,38	49,49	50,23	53,58	60,07	47,669	49,98	35,34	49,41
F _{max} , ГГц	47,87	74,23	73,39	80,27	80,65	75,07	83,71	52,62	45,3
Крутизна, мСм/мм	372,89	361,88	385,55	456,18	482,6	167,11	195,5	127,49	294,55
Напряжение отсечки V _t , В	2,683	2,823	2,65	3,145	3,467	6,668	3,989	2,879	2,51
I _{max} , мА/мм	1091,78	1093,87	1093,46	1395,19	1469,39	1117,37	824,11	339,64	679,92
Напряжение пробоя, В	4,87	24,69	24,88	11,38	21,39	8,898	5,122	0,957	9,954
I _{dss} , мА/мм	896,75	914,96	893,8	1191,63	1287,59	1029,46	736,51	282,38	559,35
H21	64,76	47,21	48,21	52,14	59,18	40,99	43,13	32,39	60,4
Ширина запрещенной зоны, эВ	4,95	4,95	4,95	5,39	5,39	5,57	5,57	5,12	5,12
Максимальные мощностные па	араметрь								
PAE, %	26,6	13,8	17,5	14,6	20,4	13,1	20,6	N/A	20,9
Удельная мощность, Вт/мм	2,3	3,28	0,99	3,37	4,28	1,75	3,63	N/A	1,68
Усиление, дБ	9,11	6,13	5,82	7,68	9,26	5,56	7,05	N/A	7,54

Таблица 4. Усредненные по пластинам малосигнальные и мощностные (35 ГГц) параметры InAIN/GaN HEMT, изготовленных на гетероструктурах трех коммерческих производителей США [38]

Medjdoub) (Германия). Главным образом были исследованы гетероструктуры типа InAlN/AlN/GaN, поскольку введение прослойки AlN, как и прежде, дает дополнительные преимущества в повышении подвижности электронов 2DEG [35, 36]. Японские ученые предложили дополнительный способ повышения подвижности носителей в 2DEG до 1360 м²/(В·с) при их концентрации 1,85·10¹³ см⁻² за счет улучшения гладкости поверхности гетероструктуры InAlN/AlN/GaN путем введения промежуточного слоя AlGaN толщиной 5 нм между InAlN и AlN [37] (рис.12).

Итоги работы группы UltraGaN были фактически подведены в докладе на конференции "2nd EU FET-Claster meeting" [35] в ноябре 2007 года и в обширной статье [36] в 2008 году. Основным результатом большой исследовательской работы можно считать создание технологии изготовления широкозонных НЕМТ на гетероструктурах $In_{0,19}Al_{0,81}N/$ (AlN)/GaN с ультратонким барьерным слоем InAlN толщиной от 13 до 3,5 нм. Изготовленные приборы демонстрируют отличные статические (G_m>500 мСм/мм, I_{dss0} > 2 А/мм) и СВЧ-характеристики (F_t = 70 ГГц при L_g = 80 нм). Но самое главное – приборы выдерживают рабочие температуры до 1000°С

(рис.13 и 14). Этот результат является поистине феноменальным - никогда ранее подобных СВЧ-приборов не существовало!

Работы группы UltraGaN стимулировали многочисленные исследования технологии выращивания подобных гетероструктур и физических процессов, происходящих в приборах на их основе, по всему миру. В результате были выделены и сформулированы ряд принципиальных проблем, стоящих на пути развития этого направления:

- физические условия осаждения слоев AlN и InN методом MOCVD принципиально различаются, что делает невозможным выращивание высококачественного InAlN этим методом. Решение было найдено в использовании молекулярно-лучевой эпитаксии с плазменным ВЧ-источником атомарного азота или комбинации обоих методов в одной установке. Это требует определенных затрат по созданию подходящего ростового оборудования и оптимизации ростовых процессов, что существенно сдерживает промышленное освоение;
- наблюдается проникновение Са в барьерный слой InAlN в процессе выращивания гетероструктуры, что приводит к сильному ухудшению

Рис.14. Выходные и затворные ВАХ НЕМТ In_{0,19}Al_{0,81}N/(AIN)/GaN с толщиной барьера 3,5 нм до и после температурного стресса при T=1000°C в течение 30 мин

свойств приборов [38]. Для предотвращения этого требуется тонкая настройка ростового процесса, детали которой не сообщаются;

- многие авторы наблюдали быструю деградацию приборов в рабочем режиме (в зависимости от концентрации электронов в канале), механизм которой заключается в цепочке процессов: генерация "горячих" фононов (0,12 эВ), приводящая к локальному разогреву канала, которые затем быстро переходят в долгоживущие акустические фононы, вызывающие генерацию дефектов. Последние присоединяются к уже существующим дефектам, что способствует их росту и деградации прибора [39, 40];
- не полностью устранены эффекты задержки включения HEMT по затвору и стоку (gate and drain-lag effects), которые связаны с электронными ловушками на гетерограницах, зависящих от условий ростового процесса, толщин и состава слоев [41, 42].

Все эти проблемы вызвали определенный скепсис в среде исследователей, что привело к попыткам некоторого возврата к поискам возможности улучшения качества гетероструктур AlGaN/GaN (тип I) путем введения небольшой концентрации In (2-8%) в барьерный слой AlGaN [38]. В качестве примера интересно привести результаты сравнительного анализа параметров гетероструктур и изготовленных на них НЕМТ трех различных коммерческих европейских производителей, сделанного в работе [38] в 2008 году (табл.4). Виден сильный разброс характеристик гетероструктур и транзисторов как по постоянному току, так и по СВЧ-параметрам. Наилучшие результаты получены на гетероструктурах производителя А, где содержание In всего 2%, причем оптимальная доля Ga составила 25%. На частоте 35 ГГц получены высокие значения G_m, $\mathrm{I}_{\mathrm{dss}}$ и удельная величина выходной мощности

(P_{out}), сравнимые с лучшими образцами НЕМТ на AlGaN/AlN/GaN без In. Фактически ожидаемых преимуществ от введения In в барьер AlGaN не наблюдается. Авторы отмечают, что ограничивающими факторами являются неизвестные рос-

Мощностные параметры

Рис.15. НЕМТ гетероструктура AlGaN/GaN/InGaN/GaN с улучшенными возможностями удержания электронов в канале [43–45]

товые дефекты и плохое качество гетерограниц, т.е. требуются дальнейшие усилия по улучшению качества материала.

В связи с вышеизложенным особо отметим выдающиеся частотные и мощностные параметры транзисторов, полученные на другом, весьма оригинальном варианте In-содержащей гетероструктуры (рис.15) [43-45]. В данном случае было предложено ввести слой In_{0.1}Ga_{0.9}N толщиной всего 1 нм под каналом GaN (рис.13а), что создало ступеньку на зонной диаграмме на нижней границе канала (рис.13б), препятствующую уходу электронов в буферный слой. В совокупности с заглублением затвора это позволило создать прибор с наивысшей на сегодня удельной выходной мощностью - более 10,5 Вт/мм на частоте 40 ГГц (рис.13в). Аналогичная попытка улучшения гетероструктуры была предпринята в работе [46], но с гораздо более скромными результатами.

Тем не менее, работы по совершенствованию гетероструктур InAlN/(AlN)/GaN и технологии изготовления приборов продолжаются в университетских и отраслевых лабораториях. Наиболее интересные результаты были представлены в 2010 году. Были преодолены технологические трудности выращивания InAlN/AlN/GaN гетероструктур [47], в результате получены барьерные слои InAlN без примеси Ga как методом МЛЭ, так и MOCVD, с весьма высокими параметрами двумерного электронного газа: $n_s = 2,4 \cdot 10^{13}$ см⁻², $\mu_e > 1100$ см²/(B·c). НЕМТ с длиной затвора L_g = 160 нм и шириной (периферией) W_g =2·150 мкм (F_t = 107 ГГц) продемонстрировал удельную выходную мощность 5,8 Вт/мм при РАЕ 43,6% в Ка-диапазоне частот при напряжении питания 20 В.

В работе [48] были успешно изготовлены и подробно исследованы In_{0,17}Al_{0,83}N/AlN/GaN HEMT с толщинами барьера InAlN от 6 до 8,9 нм (рис.16). Представлены результаты подробного исследования зависимости статических и СВЧ-параметров приборов от толщины барьера и длины затворов L_g в диапазоне от 250 до 50 нм, как для непассивированных, так и пассивированных (Al₂O₃) структур. Впервые для широкозонных НЕМТ получена крутизна транзистора G_m = 690 мСм/мм при углублении затвора на 3-4 нм. Пробивные напряжения затворов при такой толщине барьера составляют 53-63 В в зависимости от метода измерений. Уровень параметров приборов в данной работе свидетельствует о наступлении новой эры развития СВЧэлектроники.

Обзор [49] подводит итог развитию нитридных струтур за последние годы и посвящен скорее философскому осмыслению наблюдаемых революционных процессов, чем анализу технологии. Авторы проводят параллель между развитием Inсодержащих нитридов и сравнительно недавним прогрессом в повышении рабочих частот НЕМТ на основе арсенидных гетероструктур при переходе от рНЕМТ на GaAs к НЕМТ и рНЕМТ на InP. Корреляции процессов очевидны, но в случае нитридов повышение частот не сопровождается расплатой в виде снижения пробивных напряжений, что вызывает у авторов восторг и изумление.

Судя по представленным материалам и тону публикаций, долгожданный прорыв широкозонных HEMT-гетероструктур InGaN/AlN/GaN в миллиметровый диапазон состоялся. Для иллюстрации происходящих революционных процессов суммируем наиболее яркие результаты, полученные в последние годы на In-содержащих нитридных гетероструктурах (табл.5).

ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ ПОВЫШЕНИЯ ПАРАМЕТРОВ НЕМТ НА ОСНОВЕ ШИРОКОЗОННЫХ ГЕТЕРОСТРУКТУР ТИПОВ I, II И III

В последние годы получили развитие некоторые технологические способы повышения СВЧ-характеристик НЕМТ, которые применяются для всех развитых типов гетероструктур.

Одним из наиболее полезных является углубление подзатворной области путем плазмохимического травления (рецесс), которое обычно совмещается с процедурой травления щели в диэлектрике SiN (см., например [27]). В результате происходит улучшение всех основных параметров:

- крутизны транзистора из-за уменьшения расстояния затвор-канал;
- снижение сопротивления истока и стока из-за отсутствия обеднения областей затвор-исток и затвор-сток транзистора;

Al ₈₃ In ₁₇ N (8,9–7,0 нм)
AIN (1,5 нм)
GaN (2 мкм)
AIN
Подложка SiC

уменьшение или даже устранение переходных

Рис.16. Исследуемая структура In_{0.17}Al_{0.83}N/Al**N/GaN** HEMT [48]

m
0
р
0
9
Ζ
р
×
\approx
≓
<u> </u>
g
I
\times
_
÷
÷
ㅎ
¥
2
5
Ĕ
ò
Ĕ
ŝ
Ζ
\Rightarrow
ŧ
ί.
¥
1
Ĕ
\simeq
б
D
b
×
_
\cong
=
2
F
\sim
D
>
E .
¥
~
\sim
d
Tp
остр
ростр
еростр
теростр
етеростр
гетеростр
Т-гетеростр
ИТ-гетеростр
MT-гетеростр
EMT-гетеростр
НЕМТ-гетеростр
к НЕМТ-гетеростр
их НЕМТ-гетеростр
цих НЕМТ-гетеростр
щих НЕМТ-гетеростр
ащих НЕМТ-гетеростр
жащих НЕМТ-гетеростр
ржащих НЕМТ-гетеростр
ержащих НЕМТ-гетеростр
держащих НЕМТ-гетеростр
одержащих НЕМТ-гетеростр
содержащих НЕМТ-гетеростр
1-содержащих НЕМТ-гетеростр
In-содержащих НЕМТ-гетеростр
и In-содержащих НЕМТ-гетеростр
ы In-содержащих НЕМТ-гетеростр
гры In-содержащих НЕМТ-гетеростр
етры In-содержащих НЕМТ-гетеростр
летры In-содержащих НЕМТ-гетеростр
аметры In-содержащих НЕМТ-гетеростр
аметры In-содержащих НЕМТ-гетеростр
іраметры In-содержащих НЕМТ-гетеростр
lapaметры In-содержащих HEMT-гетеростр
Параметры In-содержащих HEMT-гетеростр
. Параметры In-содержащих НЕМТ-гетеростр
5. Параметры In-содержащих НЕМТ-гетеростр
а 5. Параметры In-содержащих НЕМТ-гетеростр
ца 5. Параметры In-содержащих НЕМТ-гетеростр
11,а 5. Параметры In-содержащих НЕМТ-гетеростр
иица 5. Параметры In-содержащих НЕМТ-гетеростр
ілица 5. Параметры In-содержащих НЕМТ-гетеростр
блица 5. Параметры In-содержащих НЕМТ-гетеростр
аблица 5. Параметры In-содержащих НЕМТ-гетеростр

Источник	Парам	етры слоев ге	етерострукту	d		Топол транзи торов	огия ис-	Статические 1араметры			СВЧ-парам	іетры				римеча- 1я
	Сар- слой	Барьерный слой	Спейсер (барьер)	Буфер	Под- ложка	WKM MKM	MKM (C	Удельный ток сток- ток сток- асток l _{dss} (максимальный о _{max}), мА/мм	Напря- жение отсеч- ки, В	Крутизна G _m , мСм/мм	Ĩ	F _{max} , ГГц	Усиле- Ние, дБ	Макси- иальная Идльная иощность, Вт/ММ	°2 PAE,	
43-45*	* 	Al ₀₃₃ Ga _{0.68} N, 13 HM	Канал: 11 HM GaN, затем ТHM	GaN	sic		0,16					1	5-6дБ (40 ГГц) :	ы0,5 (40 ГГц) ⊐ри К _р =5дБ	33 33 33 33 33 33 33 33 33 33 33 33 33	авление одзатворной убину нм (рецесс), зз пассива- ии SiNx
						150	ĽÓ			· · ·	153 при Uп = 6 В (124 при Uп = 18 В)	198 при Uп = 6 В (230 при Uп = 18 В)			ਧੋਹੋਖੇਸ	ополнительная ттимизация 1я уменьше- 1я Спар
50	Нет	Al _{0,81} In _{0,19} N, 13 HM	AIN, 1 HM	GaN, 1 MKM	Сапфир	25	0,25	2000 (2350)	8-	265		1	- · ·			
51	SiN 3 HM	Al _{0,86} In _{0,14} N, 6 нм	1	GaN	SiC	1	0,06 ((1340)	1	389	172	206				
, and the second s	L C L	InAIN, 7,5 HM	AIN		יין-ריט			504 (861)	-2,5	355	43	66	14 дБ (10 ГГц)	2 (10 Г Гц) При Кр=11,5 дБ	29,3	
2		InAIN, 11 HM	0,5 нм			2		339 (1040)	-4,2	349	34	45				
		InAIN, 18 HM						1108 (1230)	-6	298	48	65	I			

Указана структура слоев после стравливания 12 нм.
 Нет данных, поскольку указана структура после травления.

процессов при включении транзистора из-за уменьшения влияния ловушек в области затвор-сток, так как поверхность, на которой они находятся, может быть отодвинута на безопасное расстояние;

 повышаются F_t и F_{max}, поскольку отпадает необходимость пассивации затворов транзисторов.

В этой связи предлагается выращивать пассивирующий Si_3N_4 методом MOCVD сразу непосредственно после выращивания всех слоев полупроводниковой гетероструктуры для уменьшения концентрации ловушек на границе раздела [27]. При этом, правда, возникают проблемы с изготовлением омических контактов, так как при вжигании через диэлектрик омическое сопротивление получается в несколько раз хуже, чем в обычной технологии.

Авторы работы [28] в развитие этой идеи предложили вместо Si₃N₄ использовать подзатворный диэлектрик Al₂O₃ путем окисления части верхнего слоя AlN в потоке озона, создаваемого ультрафиолетом. Созданная таким образом Al₂O₃/AlN/GaN HEMT-гетероструктура обладала очень высокими параметрами 2DEG: подвижность носителей более 1800 см²/(В·с) при их концентрации 2,8·10¹³ см⁻², что позволило получить слоевое сопротивление гетероструктуры всего 167 Ом/□. Аналогичные идеи также развиваются авторами работы [52]. Сопротивление омических контактов в результате было понижено до 0,45 Ом·мм и проблема была решена.

Важность пассивации поверхности гетероструктуры после изготовления затворов особенно остро стоит для гетероструктур с тонким барьерным слоем InAlN. Например, в работе [53] сравнивались слоевые сопротивления ненапряженных гетероструктур InAlN/GaN с толщинами барьеров 18, 11 и 7,5 нм до и после пассивации диэлектриком Si₃N₄. Установлено, что наиболее сильное изменение слоевого сопротивления от 2000 до 350 Ом/□ наблюдается для самых тонких гетероструктур.

В связи с этим в последние годы развернулись интенсивные поиски оптимальных пассивирующих систем для InAlN/GaN, среди которых встречаются довольно экзотические соединения - Gd₂O₃, GdScO₃ [55] и ZrO₂, HfO₂ [54]. Применение данных соединений, часто в комбинации с Al₂O₃, позволяет увеличить в 2,5 раза импульсный ток транзистора, его крутизну и значительно уменьшить времена включения за счет компенсации поверхностных состояний [56].

ВМЕСТО ЗАКЛЮЧЕНИЯ

Информация, представленная в настоящем обзоре, свидетельствует о технологическом прорыве последних лет в разработке конструкции и технологии изготовления наногетероструктур (Al,Ga,In)N/GaN, который позволил повысить параметры двумерного электронного газа при одновременном уменьшении толщины активных слоев до 3-15 нм. Зарубежные исследователи достигли частотных параметров широкозонных НЕМТ на подложках из сапфира, SiC, синтетического алмаза и кремния, приближающихся к рекордным параметрам рНЕМТ и мНЕМТ на подложках InP и GaAs. Эти гетероструктуры явились основой для разработки и создания высокоэффективных МИС усилителей мощности Ка-, Q-, V- и W-диапазонов, в 10-15 раз превосходящих МИС на основе рНЕМТ и мНЕМТ GaAs по массогабаритным параметрам. Ведущими зарубежными производителями (Northrop Grumman, Cree, TriQuint и др.) уже освоен выпуск широкой номенклатуры МИС УМ на AlGaN/AlN/GaN/SiC с рабочими частотами до 100 ГГц. Разрабатываются и приемопередающие модули АФАР для радиолокаторов диапазона 94 ГГц (QuinStar Technology совместно с HRL) с выходной мощностью более 5 Вт (удельная выходная мощность >4 Вт/мм).

Возможно, мы являемся свидетелями наступления новой эпохи в СВЧ-микроэлектронике, связанной с расширением области применения широкозонных НЕМТ в миллиметровый и субмиллиметровый диапазоны длин волн, поскольку перед разработчиками радиоаппаратуры открываются поистине фантастические возможности.

Следует отметить, что работы в данном направлении также активно развиваются и в России. В частности, в течение 2010 года в Институте СВЧ полупроводниковой электроники (ИСВЧПЭ) РАН на гетероструктурах AlGaN/AlN/GaN отечественного производства (ЗАО "Элма-Малахит") были изготовлены полевые транзисторы с F_t = 77,3 ГГц и F_{max} = 177 ГГц, имеющие коэффициент усиления по мощности более 11,5 дБ на частоте 35 ГГц [55]. На базе данных транзисторов была впервые в России разработана и успешно реализована МИС трехкаскадного усилителя мощности диапазона частот 27–37 ГГц с К_р > 20 дБ и максимальной выходной мощностью 300 мВт в импульсном режиме [56]. В соответствии с Федеральной целевой программой "Развитие электронной компонентной базы и радиоэлектроники" предполагается дальнейшее развитие научных и прикладных исследований в данном направлении. В частности – освоение гетероструктур InAlN/AlN/GaN для создания приборов с рабочими частотами 30-100 ГГц, с участием ведущих отечественных предприятий и институтов (ФГУП "НПП "Пульсар", ФГУП "НПП "Исток", ЗАО "Элма-Малахит", ОАО "Светлана-Рост", ИСВЧПЭ РАН и др.).

ЛИТЕРАТУРА

- U.K.Mishra, P.Parikh, Y.F.Wu. AlGaN/GaN HEMTs An overview of device operation and applications. – Proceedings of the IEEE, vol. 90, No 6, June 2002.
- 2. Likun Shen. Advanced Polarization-Based Design of AlGaN/ GaN HEMTs. - Dissertation, University of California, Santa Barbara, 2004.
- 3. **M.Germain, M. Leys, et al.** High electron mobility in AlGaN/GaNHEMTgrownonsapphire: strain modification by means of AlN interlayers" 2004 Materials Research Society Symp. Proc., vol. 798, p.Y10.22.1-Y10.22.6.
- Mark Kramer, et al. Strongly Reduced Gate Lag in Undoped AlGaN/GaN HEMTs on Sapphire. - http://tte.ele.tue.nl/ oed/publications/OED%20pubs%202003/Kramer%20stron gly%20reduced%20SAFE%2003.pdf.
- Cathy Lee, Paul Saunier, Jinwei Yang, M. Asif Khan. AlGaN-GaN HEMTs on SiC With CW Power Performance of >4 W/mm and 23% PAE at 35 GHz. - IEEE Electron Device Letters, vol. 24, No 10, p. 616-618, October 2003.
- W. Lu, V. Kumar, R. Schwindt, E. Piner, and I. Adesida. DC, RF, and Microwave Noise Performances of AlGaN/ GaN HEMTs on Sapphire Substrates. - IEEE Transactions on Microwave Theory and Techniques, November 2002, vol. 50, No 11, p. 2499-2504.
- K.K.Chu, et al. 9.4-W/mm Power Density AlGaN-GaN HEMTs on Free-Standing GaN Substrates. - IEEE Electron Device Letters, September 2004, vol. 25, No 9, p. 596–598.
- V.Desmaris, J.Eriksson, N.Rorsman, H.Zirath. Fabrication and Characterization of Submicron AlGaN/GaN HEMTs. - http://www.ep.liu.se/ecp/008/posters/008/ ecp00808p.pdf
- Schwindt Randal S., et al. Millimeter-wave high-power 0.25-μm gate-length AlGaN/GaN HEMTs on SiC substrates. - IEEE Microwave and Wireless Components Letters, 2003, vol. 13, No 3, p. 93-95.
- Umesh K. Mishra, et al. Study of the n+ GaN Cap in Al-GaN/GaN High Electron Mobility Transistors with Reduced Source-Drain Resistance. - Jpn. J. Appl. Phys. 46 (2007), p. L842-L844.
- 11. E.L.Piner, D.M. Keogh, J.S. Flynn, and J.M Redwing. AlGaN/GaN High Electron Mobility Transistor Structure Design and Effects on Electrical Properties.
- 12. A.R. Barnes. ESA GaN Noise Assesment Summary Report. QinetiQ, 2004.
- 13. **S. Piotrowicz, et al.** State of the Art 58W, 38% PAE X-Band AlGaN/GaN HEMTs microstrip MMIC Amplifiers - IEEE

Compound Semiconductor IC Symposium CSICS 2008, 12-15, 2008.

- G.H. Jessen, et al. Short-Channel Effect Limitations on High Frequency Operation of AlGaN/GaN HEMTs for T-Gate Devices. - IEEE Transactions on Electron Devices, Oct. 2007, vol.54, No10, p.2589–2597.
- J.P.Ibbetson, et al. Polarization effects, surface states, and the source of electronsin AlGaN/GaN heterostructure field effect transistors. - Applied Physics Letters, vol. 77, No 2, 10 Jul 2000.
- I.P.Smorchkova, L.Chen, U.K.Mishra, et al. AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy. -J. Appl. Phys. 90, 5196 (2001).
- M.Miyoshi, et al. High-electron-mobility AlGaN/AlN/ GaN heterostructures grown on 100-mm-diam epitaxial AlN/sapphire templates by metalorganic vapor phase epitaxy. - Appl. Phys. Lett., Vol. 85, No. 10, 6 September 2004.
- Miyoshi Makoto, Egawa Takashi, Ishikawa Hiroyasu. Study on mobility enhancement in MOVPE-grown Al-GaN/AlN/GaN HEMT structures using a thin AlN interfacial layer. - Solid-State Eelectronics, vol. 50, No 9-10, p. 1515-1521 (2006).
- Ma Zhi-Yong et al. Growth and Characterization of Al-GaN/AlN/GaN HEMT Structures with a Compositionally Step-Graded AlGaN Barrier Layer - Chinese Phys. Lett., vol. 24, p. 1705–1708 (2007).
- 20. **K. Chabak, et al.** Processing Methods for Low Ohmic Contact Resistance in AlN/GaN MOSHEMTs – CS MANTECH Conference, May 18th-21st, 2009.
- 21. **Mark Rosker.** The Present State of The Art of Wide Band Gap Semiconductors and Their Future - 2007 RFIC Symposium, 4 Jul 2007, p.159-162.
- 22. **C.Y. Chang, et al.** Very Low Sheet Resistance AlN/GaN High Electron Mobility Transistors – CS MANTECH Conference, May 18th-21st, 2009.
- 23. **Chen Tangsheng, et al.** AlGaN/GaN MIS HEMT with AlN Dielectric. MANTECH Conference, April 24-27, 2006.
- 24. J.G.Felbinger, et al. AlGaN/GaN-on-Diamond HEMT Recent Progress. - http://group4labs.com/pdf/WOSCDICE_ AIGaN-GaN_HEMTs_Progress_Abstract.pdf.
- 25. **Ming-Yih Kao, et al.** AlGaN/GaN HEMTs with PAE of 53% at 35 GHz for HPA and Multi-Function MMIC Applications. TriQuint Semiconductor, 2007.
- 26. **Yifeng Wu, Primit Parikh.** High-power GaN HEMTs battle for vacuum-tube territory. - Compound Semiconductor, January/February 2006.
- 27. M. Germain, et al. Surface Stabilization for Higher Performance AlGaN/GaN HEMT with in-situ MOVPE SiN" Materials Research Society Symp. Proc., 2005, vol. 831, p. E6.7.1-E6.7.6.

- C.Y. Chang, et al. Very Low Sheet Resistance AlN/GaN High Electron Mobility Transistors. - CS MANTECH Conference, May 18th-21st, 2009.
- T.Zimmermann, Y.Cao, D.Jena, H.G.Xing, P.Saunier "4nm AlN Barrier all Binary HFET with SiN_x Gate Dielectric" – International Journal of High Speed Electronics and Systems, vol. XX, No. X (2008), p. 1–7.
- 30. Huili (Grace) Xing, T. Zimmermann, et al. Ultrathin allbinary AlN/GaN based high-performance RF HEMT Technology. – Department of Electrical Engineering, University of Notre Dame, USA.
- 31. **N. Onojima, N. Hirose, T. Mimura, T. Matsui**. Ultrathin AlN/GaN heterostructure field-effect transistors with deposition of Si atoms on AlN barrier surface. – Appl. Phys. Lett. 93, 223501 (2008).
- 32. C.Lian, T.Zimmermann, et al. Molecular Beam Epitaxy Regrowth of Ohmics in Metal-face AlN/GaN Transistors.
 - CS MANTECH Conference, May 17th-20th, 2010.
- 33. **Kuzmik Jan.** Power electronics on InAlN/(In)GaN: prospect for a record performance. - IEEE Electron Devices Letters, 2001, vol. 22, p.510-512.
- 34. J.Kuzmik. InAlN/(In)GaN high electron mobility transistors: some aspects of the quantum well heterostructure proposal. Semicond. Sci. Technol., vol. 17, p.540-544 (2002).
- 35. **E.Kohn, F. Medjoub, J. Kuzmik, et al.** UltraGaN project: Breakthrough in GaN devices thanks to InAlN/GaN heterostructure. - 2nd EU FET-Cluster meeting, Las Palmas de Gran Canaria (Spain), November 13-16, 2007.
- 36. **F.Medjdoub, E. Kohn, et al.** Status of the Emerging InAlN/ GaN Power HEMT Technology. - The Open Electrical and Electronic Engineering Journal, 2008, vol. 2, p. 1-7.
- 37. **Masanobu Hiroki, Narihiko Maeda, Takashi Kobayashi.** Fabrication of an InAlN/AlGaN/AlN/GaN Heterostructure with a Flat Surface and High Electron Mobility. - Applied Physics Express 1 (2008) 111102.
- M.Trejo, et al. Materials Characterization and Device Performance Survey of InAlN/GaN HEMT Layers from Commercial Sources. - CS MANTECH Conference, April 14-17, 2008.
- Matulionis A.; Morkos H. Hot phonons in InAlN/AlN/ GaN heterostructure 2DEG channels. - Gallium Nitride Materials and Devices IV, Proceedings of the SPIE, vol. 7216 (2009)., p. 721608-721608-14 (2009).
- J.H. Leach, H. Morkos, et al. "Degradation in InAlN/ GaN-based heterostructure field effect transistors: Role of hot phonons" – Appl. Phys. Lett., vol. 95, No 22. (2009), 223504.
- J.Kusmik, et al. Gate-lag and drain-lag effects in (GaN)/ InAlN/GaN and InAlN/AlN/GaN HEMTs. - Physica Status Solidi (a) 204 (2007) p.2019.
- 42. J.H. Leach, H. Morko3, et al. Transient current spectroscopy of lattice matched InAlN/AlN/GaN HFETs for identi-

fication of traps resulting in gate lag. – Gallium nitride materials and devices No4, San Jose CA , ETATS-UNIS (2009), vol. 7216.

- 43. Umesh K. Mishra. "Status of AlGaN/GaN HEMT Technology-A UCSB perspective" - 13th GaAs Symposium, Paris, 2005, p. 21-28.
- 44. **T. Palacios, Keller, U. K. Mishra, et al.** High-Power Al-GaN/GaN HEMTs for Ka-Band Applications – IEEE Electron Device Letters, November 2005, vol. 26, No 11, p. 781-783.
- 45. **T. Palacios, Keller, U. K. Mishra, et al.** AlGaN/GaN High Electron Mobility Transistors With InGaN Back-Barriers - IEEE Electron Device Letters, Vol. 27, No. 1, Jan. 2006
- 46. **Jie Liu, et al.** DC and RF Characteristics of AlGaN/GaN/In-GaN/GaN Double-Heterojunction HEMT. - IEEE Transactions on Electron Devices, vol. 54, No 1, January 2007.
- J. Gillespie, M. Trejo, et al. Ultra Thin Barrier Layers for mmW Frequencies in III-N HEMT Technologies. - CS MANTECH Conference, May 17th-20th, 2010.
- Han Wang, T.Palacios, et al. High Performance InAlN/ GaN HEMTs on SiC Substrate - CS MANTECH Conference, May 17th-20th, 2010.
- 49. **Colombo Bolognesi, Nicolas Grandjean.** GaN HEMTs advance to ultrahigh bandwidth. – Compound Semiconductor, August/September 2010, vol. 16, No. 6, pp. 15–21.
- 50. F. Medjdoub, E. Kohn, et al. Above 2 A/mm drain current density of GaN HEMTs grown on Sapphire/IEEE Lester Eastman Conference on High Performance Devices, Ithaca (USA), 2006. International Journal of High Speed Electronics and Systems, 2007, vol. 17, No 1, p. 91–95.
- 51. **Masataka Higashiwaki, Takashi Mimura, Toshiaki Matsui.** High-Performance Short-Gate InAlN/GaN Heterostructure Field-Effect Transistors. – Jpn. J. Appl. Phys. 45 (2006) p. L843-L845.
- K. Chabak, M. Trejo, et al. Processing Methods for Low Ohmic Contact Resistance in AlN/GaN MOSHEMTs. - CS MANTECH Conference, May 18th-21st, 2009.
- 53. J.Kusmik, et al. Insulating films for InAlN/GaN-based MOSHEMT CENG, Oktober 2007.
- 54. J.Kusmik, G.Pozzovivo, et al. Technology and performance of InAlN/AlN/GaN HEMTs with gate insulation and current collapse suppression using ZrO₂ or HfO₂.
 IEEE Transactions On Electron Devices, 2008, vol. 55, p. 937–941.
- 55. Федоров Ю.В., Гнатюк Д.Л., Галиев Р.Р. и др. Исследования влияния толщины барьерного слоя гетероструктур AlGaN/AlN/GaN/Сапфир на параметры НЕ-МТ КВЧ диапазона. – В сб.: IX научно-техническая конференция «Твердотельная электроника, сложные функциональные блоки РЭА» (Звенигород, 1–3 декабря 2010 г.).
- 56. **Федоров Ю.В., Гнатюк Д.Л., Галиев Р.Р. и др.** Усилители мощности КВЧ диапазона на гетероструктурах AlGaN/**AlN/GaN/Canфup – см. там же.**