# ПРОГРАММА ALTIUM DESIGNER 14 – НОВЫЕ ВОЗМОЖНОСТИ ДЛЯ ПРОЕКТИРОВАНИЯ ПЕЧАТНЫХ ПЛАТ

А.Сабунин sabunin@rodnik.ru

В октябре 2013 года вышла новая, четырнадцатая версия программы Altium Designer [1, 2]. В ней появились, в частности, специальные функции для проектирования гибко-жестких плат и встраиваемых компонентов. О наиболее значимых добавлениях в версии Altium Designer 14 рассказывается в данной статье.

### ПРОЕКТИРОВАНИЕ ГИБКО-ЖЕСТКИХ ПЕЧАТНЫХ ПЛАТ

Гибкая печатная плата (ГПП) – это плата, выполненная на тонком и гибком основании. Основная область использования ГПП – соединители между деталями электронных устройств на базе жестких печатных плат. В этом случае они служат заменой кабельных соединений. Структура гибкой платы многослойная. Она состоит из основания, адгезивов, проводящего и защитного слоев.

Гибко-жесткие печатные платы (ГЖПП) (рис.1) – это изделия, для производства которых применяют технологии производства традиционных (жестких) и гибких плат. На данный момент ГЖПП – наиболее сложные из печатных плат. Самый простой вариант ГЖПП – гибкие платы с локальным механическим усилением. Их используют, как правило, в зоне электрического контакта ГПП с противоположной контактным площадкам стороны. Механическое усиление обеспечивает



Рис.1. Гибко-жесткая печатная плата

## печатный монтаж

надежность электрического соединения между гибкой платой и разъемом на обычной печатной плате. В более сложных конфигурациях гибкую часть ГЖПП используют в качестве соединительного шлейфа между двумя (или более) жесткими многослойными платами.

Если многие предприятия, которые имеют дело с ГЖПП, уже учитывают особенности их применения, то системы автоматизированного проектирования (САПР) на данный момент не имеют специальных инструментов для проектирования таких плат. В то же время к этим платам предъявляется целый ряд специфических требований: провод-

Save Load Presets - 3D • ッ 🤍 🔮 🛐 Custom Dielectric Layer Name Top Overlay Top Solder Top Layer \_ \_ \_ \_ \_ \_ \_ \_ Signal 03556 Copper None 0.32004 tric 1 ----Mid-Laver 1 Signal Conner 0.03556 Nat Allowed 0.32004 2 - -4.8 None V ----Mid-Laver 2 Signal Copper 0.03556 4.8 2 0.1 FR.4 Bottom Layer ----Signal Solder Mask/Cov... Surface Material 0.01016 Solder Resist 35 Bottom O Total Thickness: 0.90264mm Add Layer Delete Layer Move Up Move Down Drill Pairs... Impedance Calculation... Layout Stack Pm Rigid Name: Rigid ---- Rex
 Stack in U ..... -----Manao . . . . . . . . . . . . . . . Add Stack Delete Stack Show User Stacks Move Left Move Right Simple << OK Cancel

Рис.2. Управление структурой платы

ники в гибкой части ГЖПП должны иметь особую конфигурацию, контактные площадки должны быть усилены и т.д. [3-8].

В новой версии Altium Designer 14 появился целый ряд функций для проектирования ГЖПП:

- управление стеком слоев индивидуально для разных участков платы;
- возможность указать линии и радиусы сгиба гибкой части ГЖПП и просмотреть такую плату в трехмерном режиме;



Рис.3. Управление параметрами различных участков платы

• возможность задавать индивидуальные настройки для гибкой и жесткой частей платы. Посмотрим, как эти возможности реализованы в Altium Designer 14 применительно к различным

этапам проектирования платы.

Шаг 1 - контур платы. Для формирования ГЖПП сначала создается обычная плата, и на первом шаге необходимо определить ее контур. При этом задается контур всей ГЖПП, даже если в разных жестких и гибких частях будет разный набор слоев. Для создания контура используются команды в меню Design  $\rightarrow$  Board Shape, где выбираются инструменты Define From Selected Objects (создать из выделенных объектов) или Define From 3D Body (создать из 3D-модели). Первая команда применяется при импорте контура из стороннего MCADa (Компас, SolidWorks и др.), вторая – при импорте реалистичной трехмерной модели платы в формате STEP (SolidWorks, Creo и др.). Контур может быть также получен более традиционным способом - созданием в механическом слое.

Шаг 2 – определение структуры платы. Сама процедура описания стека слоев в плате не изменилась и может быть выполнена в любом режиме работы (2D, 3D) через меню Design→Layer Stack Manager (рис.2). Появилась возможность задать несколько стеков (в случае, показанном на рис.2, заданы два – Rigit и Flex) и дать каждому из них свое наименование. Для стека можно указать несколько слоев, и для каждого из них задать необходимый набор характеристик (в верхней части окна Layer Stack Manager).

Шаг 3 – разделение участков. Необходимо показать, где будут находиться участки, определяющие гибкие и жесткие части ГЖПП. Для этого используется отдельный режим работы с платой - Board Planning Mode, который дополняет ранее существовавшие режимы работы - 2D Layout Mode и 3D Layout Mode. Все они доступны в меню View или могут быть включены горячими клавишами 1, 2, 3 соответственно. После включения режима Board Planning Mode интерфейс программы изменится (рис.3) и в меню View появятся команды Define (Delete) Split Line - добавление (удаление) линий, разделяющих гиб-

кую и жесткую части. Такие линии рисуются поверх контура платы и могут быть только прямыми, соединяющими две точки, лежащие на контуре. Две части, на которые линия поделит плату, могут иметь индивидуальные настройки. В окне Board Region (см. рис.3) каждому участку можно дать пользовательское название и выбрать для него соответствующий стек из заданных на шаге 2.

Шаг 4 – линии сгиба гибкой части ГЖПП. Линии сгиба создаются в режиме Board Planning Mode (см. рис.3). Для этого используется инструмент Design → Define Bending Line, который может быть применен только к гибкой части ГЖПП. Линия сгиба должна соединять две точки контура гибкой части и может представлять собой только один отрезок. В свойствах линии сгиба (окно Bending Lines) можно указать угол и радиус сгиба.

**Шаг 5** – просмотр ГЖПП конечном виде. Можно согнуть плату по линиям сгиба и просмотреть ее



Рис.4. Встраиваемые компоненты

#### www.electronics.ru

## печатный монтаж

в том виде, в котором она будет использована в конечном изделии. Для этого используется маркер Fold State в панели PCB (см. рис.3). Такой просмотр позволит определить сопряжение между компонентами, размещенными на разных жестких частях ГЖПП.

#### ВСТРАИВАЕМЫЕ КОМПОНЕНТЫ

Традиционно монтаж электрических компонентов на печатных платах выполнялся выводами в сквозные отверстия либо на поверхность платы (поверх-

ностный монтаж). Однако технологический прогресс позволил встраивать электрические компоненты также и внутрь платы (рис.4). Первыми встраиваемыми компонентами были резисторы, которые изготавливались травлением рисунка в двухслойной фольге (медь – резистивный слой). Дополнительно формировались конденсаторы – из тонкого диэлектрика между близко расположенными поверхностями медной фольги, а также индуктивности – травлением витков фольги во время изготовления внутренних слоев.

Встраиваемые компоненты могут быть сформированы внутри многослойной подложки межсоединений производителем платы либо вставлены в нее на этапе монтажа с использованием традиционного оборудования и технологий поверхностного (SMT) монтажа. Встраиваемые компоненты бывают как пассивными, так и активными [8].

Так же, как в случае с ГЖПП, технологии встраиваемых компонентов не были сразу поддержаны производителями САПР. Лишь в последние пару лет в САПР стали появляться инструменты для применения таких компонентов на печатных платах. В Altium Designer 14 также появилась возможность использования встраиваемых компонентов. Для этого нужно выполнить два шага.

Шаг 1 – определение геометрии полости. Компонент, помещенный внутрь платы, будет занимать там какое-то пространство, и информация об этом должна быть сформирована на стадии его создания в библиотеке. Для посадочного места необходимо нарисовать полигон (используя команду Place→Solid Region), после чего в его настройках задать следующие дополнительные параметры (рис.5):

• Kind (тип) - Cavity definition (описание полости), этим данный полигон будет определен как



Рис.5. Определение полости, в которой будет размещен компонент

фигура, задающая геометрию полости для встраиваемого компонента;

- Layer (слой) для полостей необходимо задействовать один из пользовательских слоев (Mechanical), в котором будет храниться информация о геометрии выреза;
- Height (высота) в данном случае это глубина полости.

Шаг2-настройки компонента на плате. На самой плате необходимо зайти в свойства компонента и указать в поле Layer слой, на котором должен быть размещен данный компонент. Направление компонента задается в настройках Design → Layer Stack Manager в поле Orientation.

По сравнению с описанными выше новыми возможностями, которые предоставляют пользователям принципиально новые технологии разработки в Altium Designer 14, другие добавления новой версии не столь радикальны. Среди них можно отметить следующее:

• массив переходных отверстий на заданном участке. Инструмент Via Stitching, который позволяет формировать массив переходных отверстий

## печатный монтаж

для объединения полигонов земли на разных слоях, появился в предыдущей версии Altium Designer 13. В новой версии его возможности были расширены – теперь такой массив отверстий можно формировать на заданном участке (рис.6);

- расширенные правила для дифференциальных пар. Теперь правила для дифференциальных пар можно применять к "комнатам" (Rooms) и слоям, задавая различные параметры пары на разных участках платы и запрещая/разрешая трассировку пар в определенных слоях;
- улучшенные возможности импорта формата DXF. Реализована поддержка всех графических примитивов (дуги, окружности и др.), которые созданы и сохранены в формате DXF, используемом в программе

AutoCAD. Ранее такие примитивы либо разбивались на набор точек или линий, либо не импортировались. В Altium Designer 14 поддерживаются все версии AutoCAD, вплоть до версии AutoCAD 2013;

• импорт топологии из EAGLE. Система EAGLE довольно часто используется любителями, так как имеет набор базовых инструментов для создания топологии и проста в использовании, но не применяется на предприятиях из-за ограниченных возможностей. Импорт топологии из программы EAGLE предназначен больше для тех, кто имеет наработки в данной системе и желает транслировать их в Altium Designer.

Подводя итог, можно отметить, что новые возможности Altium Designer 14 следуют современным тенденциям создания электронных устройств. Поддержка функционала по разработке гибкожестких печатных плат и встраиваемых компонентов позволит пользователям САПР полноценно проектировать устройства с применением новых технологий, а не придумывать обходные пути, как было ранее. Просмотр ГЖПП или платы со встраиваемыми компонентами в трехмерном режиме дает возможность обнаружить ошибки на самой ранней стадии проекта, что в свою очередь

| 💐 Add Stitching to Net                                                                                             |                                    |                                      | ?                        |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|--------------------------|
| Stitching Parameters Net GND  Constrain Area Edit Area                                                             | Via Style<br>Diameters<br>© Simple | O Top-Middle-Bottom                  | © <u>F</u> ull Stack     |
| Y: 0mm                                                                                                             | <u>H</u> ole Size                  | Diamete<br>Diamete<br>Load values fr | er 1mm                   |
| Grid 1.5mm                                                                                                         | Properties<br>Start Layer Top Laye | Solder Mask Expansion va             | nsions<br>lue from rules |
| Same Net Clearances<br>No applicable design rule detected.<br>The default clearance defined below<br>will be used. | End Layer Bottom                   | Layer                                | te tenting on top        |
| Create new clearance rule<br>Default Via/Pad<br>Clearance                                                          |                                    |                                      |                          |
| Min Boundary<br>Clearance 1mm                                                                                      |                                    |                                      |                          |
| Ø More Information                                                                                                 |                                    |                                      | OK Cancel                |

**Рис.6.** Формирование массива переходных отверстий на заданном участке

экономит временные и финансовые затраты на проектирование.

#### ЛИТЕРАТУРА

- 1. www.youtube.com/user/SabuninAlexey.
- Сабунин А.Е. Altium Designer. Новые решения в проектировании электронных устройств. – М.: Солон-Пресс, 2009.
- 3. IPC-2223A. Sectional Design Standard for Flexible Printed Boards. www.ipc.org.
- Акулин А. Проектирование гибко-жестких печатных плат. Материалы, конструкции и особенности проектирования. – Технологии в электронной промышленности, 2007, №8, с.18.
- Акулин А. Гибкие и гибко-жесткие печатные платы. Комментарии к стандарту IPC-2223А.
   Ч.1-2. – Электронные компоненты, 2005, №10, с.1; №11, с.27.
- Медведев А., Мылов Г. Гибкие платы. Преимущества и применение. – Компоненты и технологии, 2007, №9, с.202.
- Медведев А., Мылов Г. Развитие технологий элементов электрических межсоединений в электронных системах. – Печатный монтаж, 2012, №1, с.196.
- Печатные платы: Справочник. Под ред. К.Ф.Кумбза. - М.: Техносфера, 2011.