МЕТАЛЛОКЕРАМИЧЕСКИЕ КОРПУСА АО "ТЕСТПРИБОР": ЭФФЕКТИВНАЯ ЗАЩИТА ОТ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

Н.Василенков¹, А.Максимов²

УДК 621.3 ВАК 05.27.06

Сегодня радиационная стойкость электронной компонентной базы (ЭКБ) обеспечивается преимущественно двумя способами: технологическим (применением специальных процессов и материалов при изготовлении интегральных микросхем – ИМС) и конструктивным. Конструктивная защита (обшивка) космических аппаратов (КА), выполненная на основе алюминия и его сплавов, не в полной мере ослабляет радиационные факторы космического пространства (КП). Применение радиационно-стойких ИМС не всегда возможно: например, ограничен срок проектирования КА, неприемлемо высока стоимость и др. Поэтому для защиты наиболее уязвимых элементов следует использовать локальную защиту, которая не влечет за собой значительного увеличения массы и габаритов КА и при этом обеспечивает необходимый уровень ослабления ионизирующего излучения КП.

ля локальной защиты кристаллов ИМС в составе КА от воздействия ионизирующего излучения (ИИ) КП по дозовым эффектам существует ряд технических решений: специализированные корпуса ИМС (WALOPACK, RAD-PAK), покрытия и локальная защита ИМС в составе аппаратуры КА. Все эти решения направлены на повышение радиационной стойкости коммерческих микросхем либо микросхем с уникальными функциональными характеристиками, радиационно-стойкие аналоги которых отсутствуют.

В АО "ТЕСТПРИБОР" разработаны два варианта специализированных металлокерамических корпусов (МК) с интегрированными радиационно-защитными экранами (РЗЭ): 4247.100-2 и 4248.144-2 (рис.1). Их основное различие состоит в способе герметизации подкорпусного пространства. В первом корпусе металлическая крышка с Т-образным профилем соединяется с корпусом методом шовно-роликовой сварки, а защитный экран размещается под ней (рис.la); во втором — защитный экран припаивается к корпусу и служит также крышкой (рис.lб).

Оба корпуса имеют нижние защитные экраны, которые одновременно являются монтажными площадками для посадки кристаллов ИМС. Рассмотрим эффективность ослабления локальных дозовых нагрузок этими корпусами и сроки активного существования размещенных в них микросхем в различных условиях.

ЭФФЕКТИВНОСТЬ ОСЛАБЛЕНИЯ ЛОКАЛЬНЫХ ДОЗОВЫХ НАГРУЗОК

Для оценки ослабления локальных дозовых нагрузок (ЛДН) специализированными металлокерамическими корпусами 4248.144-2 и 4247.100-2 использовалось численное моделирование в ПО Fastrad и GEANT4; полученные результаты сравнивались с экспериментальными данными.

Оценка ослабления ЛДН проводилась в два этапа: при перпендикулярном падении пучка частиц (протонов

¹ АО "ТЕСТПРИБОР", генеральный директор.

² АО "ТЕСТПРИБОР", начальник КБ, maximov1982@mail.ru.

Рис.1. Специализированные планарные металлокерамические корпуса с интегрированными радиационно-защитными экранами: a) 100-выводной 4247.100-2, б) 144-выводной 4248.144-2

или электронов) на крышки МКК 4248.144-2 и 4247.100-2; для изотропного потока частиц в КП на пяти типовых орбитах.

Критерий выбора типовых орбит – их прохождение через естественные радиационные пояса Земли (ЕРПЗ): протонов, электронов, а также одновременно через оба этих пояса. Кроме того, учитывалась распространенность тех или иных орбит для современных КА. Было выбрано пять орбит:

- МКС круговая орбита с высотой 400 км и наклонением 51,5°;
- круговая полярная орбита с высотой 800 км и наклонением 98°;
- высокая эллиптическая орбита (ВЭО) апогей 40000 км, перигей 500 км, наклонение 63°, аргумент перигея 270°;
- ГЛОНАСС круговая орбита с высотой 19100 км и наклонением 64,8°;

Таблица 1. Коэффициенты ослабления дозовой нагрузки корпусами 4248.144-2 и 4247.100-2 при воздействии пото-ков электронов

Наименова- ние корпуса	Электрон гией 2	ы с энер- ,2 МэВ	Электроны с энер- гией 3,6 МэВ		
	Экспе- римент	Расчет*	Экспе- римент	Расчет*	
4248.144-2	2124	1800	90	130	
4247.100-2	859	700	34	50	

Расчет проводился в ПО Fastrad (версия 3.4.3.0) прямым методом Монте-Карло. • геостационарная орбита (ГСО) – высота 35786 км.

В результате исследований были получены коэффициенты ослабления дозовой нагрузки специализированными МК 4248.144-2 и 4247.100-2 при воздействии потоков электронов (табл. 1) и протонов (рис.2)

Для выбранных типовых орбит и внешней защиты (обшивка КА, корпуса аппаратуры и др.) различных уровней (0,1; 0,5 и 1,0 г/см²) были рассчитаны коэффициенты ослабления дозовой нагрузки (отношение дозы в корпусе к дозе без корпуса) при воздействии отдельно электронов и протонов, а также при их суммарном воздействии (табл.2, 3). Расчеты проводились для всего спектра энергий электронов и протонов, имеющихся на соответствующих орбитах.

Рис.2. Ослабление дозовой нагрузки корпусами 4248.144-2 и 4247.100-2 при воздействии потока протонов

Внешняя защита	Орбита	Суммарная доза		Доза от электронов		Доза от протонов	
		K _{minCA} *	K _{maxCA} *	K _{minCA}	K _{maxCA}	K _{minCA}	K _{maxCA}
0,1 г/см²	МКС	46	612	3 586	4946	9	4
	Полярная	89	74	9958	3 2 4 2	6	5
	ВЭО	879	1 3 4 5	6120	9564	552	552
	ГЛОНАСС	4151	5 509	4151	5 509	- **	-
	ГСО	27 320	27 328	27 320	27 328	-	-
0,5 г/см²	МКС	5	43	941	1 1 4 9	2	2
	Полярная	4	9	1022	1 1 7 5	2	2
	ВЭО	30	40	996	1 143	14	14
	ГЛОНАСС	1085	1 361	1085	1 361	-	-
	ГСО	2034	2034	2034	2034	-	-
1,0 г/см²	МКС	2,0	7,7	649	717	1,6	1,4
	Полярная	1,9	2,5	606	673	1,5	1,5
	ВЭО	7,2	8,9	521	599	4,7	4,7
	ГЛОНАСС	609,2	692,7	609	693	-	-
	ГСО	732,4	705,4	732	705	-	-

Таблица 2. Коэффициенты ослабления дозовой нагрузки для корпуса МКК 4248.144-2

* minCA и maxCA – минимальный и максимальный уровень солнечной активности, соответственно;

^{**} Протоны ЕРПЗ для орбит ГЛОНАСС и ГСО не вносят вклад в поглощенную дозу.

Полученные результаты показывают, что специализированные МК наиболее эффективны для орбит ГСО и ГЛОНАСС. Для низких орбит (МКС, круговая полярная) и орбиты ВЭО коэффициент ослабления ЛДН находится в диапазоне от 2,0 до 9 при эффективной внешней защите не более 1,0 г/см².

СРОК АКТИВНОГО СУЩЕСТВОВАНИЯ КРИСТАЛЛОВ ИМС В КОРПУСАХ

При определении срока активного существования (САС) ИМС в составе бортовой аппаратуры КА разработчики ориентируются на уровень стойкости кристалла ИМС, определенный расчетно-экспериментальным способом по результатам испытаний на гамма и/или рентгеновских установках (источниках). Однако при применении корпусов со специализированными РЗЭ этот подход неприменим, поскольку не учитывается дополнительное ослабление корпусом потоков электронов и протонов. Поэтому была разработана и использована специальная методика оценки САС кристаллов ИМС, включающая несколько основных этапов.

 Расчет внешних радиационных условий с учетом спектров электронов и протонов ЕРПЗ и протонов солнечных космических лучей (СКЛ) и галактических космических лучей (ГКЛ).

- Расчет (методом Монте-Карло) суммарной мощности ионизирующего излучения внутри специализированного МК с РЗЭ с учетом ослабления дозовых нагрузок обшивкой КА и корпусом прибора; при этом важно учитывать реальный химический состав материалов, из которых они изготовлены.
- 3. Определение уровня стойкости кристалла ИМС расчетно-экспериментальным методом с предварительным проведением испытаний на источниках гаммаизлучения (ускорители электронов, работающие в режиме тормозного излучения, изотропные источники Со⁶⁰, Сс¹³⁷ и др.) или рентгеновских источниках. Стойкость ИМС к воздействию электронов и протонов, в соответствии с действующей в РФ нормативной документацией, принимается равной стойкости к воздействию гамма-излучения.
- 4. Расчет САС как отношения уровня стойкости кристалла ИМС к мощности излучения внутри корпуса МК с РЗЭ. В качестве примера были рассчитаны САС для кристаллов с типовым для коммерческих ИМС значением уровня стойкости 10 крад, установленных

Внешняя защита	Орбита	Суммарная доза		Доза от электронов		Доза от протонов	
		K _{minCA} *	K _{maxCA} *	K _{minCA}	K _{maxCA}	K _{minCA}	K _{maxCA}
0,1 г/см²	МКС	36	436	1 586	2 0 9 3	7,0	3,0
	Полярная	71	59	4 316	1 362	4,8	4,1
	ВЭО	484	733	2752	4172	308,2	308,2
	ГЛОНАСС	1798	2 273	1798	2 273	_**	-
	ГСО	10989	10992	10989	10992	-	-
0,5 г/см²	МКС	4,8	42,3	436	523	2,0	1,7
	Полярная	4,5	9,5	491	553	1,9	1,9
	ВЭО	30,7	41,4	493	553	14,7	14,7
	ГЛОНАСС	516,4	644,2	516	644	-	-
	ГСО	1038,5	1038,5	1 0 3 9	1 0 3 9	-	-
1,0 г/см²	МКС	2,0	7,9	377	438	1,6	1,4
	Полярная	1,9	2,6	343	394	1,5	1,5
	ВЭО	7,6	9,3	293	346	4,9	4,9
	ГЛОНАСС	357,7	411,2	358	411	-	-
	ГСО	434,0	434,0	434	434	-	-

Таблица 3. Коэффициенты ослабления дозовой нагрузки для корпуса МКК 4247.100-2

° minCA и maxCA – минимальный и максимальный уровень солнечной активности, соответственно;

^{**} Протоны ЕРПЗ для орбит ГЛОНАСС и ГСО не вносят вклад в поглощенную дозу.

Таблица 4. САС кристаллов с уровнем стойкости 10 кра,	, установленных в МКК 4248.144-2 и с	ерийный корпус без РЗЭ
---	--------------------------------------	------------------------

Орбита	Доза внутри специализиро- ванного корпуса за 1 год, рад	CAC, лет	Доза внутри серийного аналога (крышка из ковара) за 1 год, рад	CAC, лет
Круговая полярная 800 км	3,6·10 ²	28	$5,1 \cdot 10^2$	20
Геостационарная	$1,2 \cdot 10^{1}$	83	$1, 1 \cdot 10^3$	9
Орбита ГЛОНАСС	8,6·10 ¹	116	$7,7 \cdot 10^{3}$	1
Высокоэллиптическая орбита	1,6·10 ³	6	$5,3 \cdot 10^3$	2
Орбита МКС	4,2·10 ¹	238	6,2·10 ¹	161

в специализированный МК 4248.144-2 и серийный корпус без РЗЭ (табл.4). Расчеты выполнены для минимума солнечной активности при значении эффективной внешней защиты 1 г/см² и с учетом только электронов и протонов ЕРПЗ.

Как видно из полученных результатов, САС ИМС, установленных в специализированные корпуса, значительно превышает САС тех же кристаллов, размещенных в серийных корпусах без РЗЭ.

Таким образом, компания АО "ТЕСТПРИБОР" разработала корпуса с интегрированной радиационной защитой для ЭКБ, применяемой в аппаратуре ракетной и космической техники. Такие корпуса позволят решить ряд задач: обеспечить повышенную радиационную стойкость ИМС; использовать электронные компоненты коммерческого и промышленного классов для космических приложений; расширить номенклатуру применяемых ИМС и тем самым снизить затраты на комплектацию при производстве космической аппаратуры; обеспечить снижение массы и габаритов КА по сравнению с использованием стандартных методов конструктивной защиты.