УДК 621.3.049.774 | ВАК 05.27.01

Характеристики надежности современных ПЛИС

А. Строгонов, д. т. н.¹

Сегодня ПЛИС все чаще применяются в аппаратуре ответственного назначения, которая должна отвечать высоким требованиям по надежности. Однако непрерывное уменьшение технологических проектных норм при изготовлении интегральных схем усугубляет проблему обеспечения отказоустойчивости высокоинтегрированных ПЛИС. Анализ интенсивности отказов и прогнозирование характеристик надежности ПЛИС проводят по результатам ускоренных испытаний, которые за относительно короткий период времени позволяют оценить вероятность появления отказов в процессе эксплуатации устройства. Рассмотрим методику расчета экспериментальной интенсивности отказов ПЛИС с использованием статистики хи-квадрат, а также влияние сбоев, вызванных ионизирующим излучением, на характеристики надежности современных ПЛИС, выпускаемых по нанометровым проектным нормам.

адежность БИС, в том числе ПЛИС, при эксплуатации характеризуется известной кривой зависимости интенсивности отказов от времени. Эта кривая показывает относительно высокую интенсивность отказов на ранней стадии (в период приработки), сравнительно низкую и стабильную интенсивность отказов в период эксплуатации и возрастающую интенсивность в период износа (после примерно 25 лет непрерывной работы) [1, 2].

Интенсивность отказов зарубежных ПЛИС принято выражать в ФИТах (FIT – Failure in Time, или число отказов за полное время испытаний), так как это удобно и наглядно отражает сверхмалые интенсивности отказов: ФИТ= $\lambda \cdot 10^9$. Интенсивность отказов λ характеризуется размерностью 1/ч. Поэтому, например, 1 ФИТ эквивалентен одному отказу на 10⁹ приборов в час, интенсивность отказов 5 ФИТ означает, что прогнозируется пять отказов на 1 млн ИС, имеющих наработку 1000 ч.

Вероятность безотказной работы P(t) для экспоненциального закона распределения вероятностей отказа случайной величины для периода нормальной работы равна [3–5]:

$$P(t) = e^{-\lambda t} = e^{\frac{t}{t_0}}, \qquad (1)$$

где $t_0 = MTTF - среднее время наработки до первого от$ каза или ее математическое ожидание:

52 ЭЛЕКТРОНИКА НАУКА | ТЕХНОЛОГИЯ | БИЗНЕС

 $MTTF = 1/\lambda.$ (2)

Интенсивность отказов может быть оценена по формуле (3) в предположении, что действуют механизмы отказа, выявляемые температурой [3–5]:

$$\lambda = \frac{\Delta n}{N \Delta t K_{v}^{\mathrm{T}}},\tag{3}$$

где ∆*п* — число отказавших ИС за время испытаний,

N-число ИС в выборке,

 Δt – длительность испытаний,

 K_y^T показывает экспоненциальную зависимость от температуры в диапазоне 0,3–1,3 эВ. Если принять, что различные дефекты влияют примерно одинаково на изменение интенсивности отказов, то среднюю энергию активации можно считать равной 0,4 эВ. В соответствии с правилом «10 градусов» принимают, что скорость старения увеличивается вдвое при повышении температуры на 10 °C. Этому закону нарастания скорости старения соответствует энергия активации в пределах 0,7–0,8 эВ. Поэтому величину 0,7 эВ обычно используют в расчетах интенсивности отказов.

В качестве показателя снижения долговечности прибора в результате развития дефектов при повышении температуры от T_1 до T_2 используют коэффициент ускорения $K_{\nu}^{\rm T}$ [1–5]:

$$K_{y}^{T} = \frac{t_{1}}{t_{2}} = \exp\left(\frac{E_{a}}{k} \left[\frac{1}{T_{1}} - \frac{1}{T_{2}}\right]\right),$$
(4)

¹ Воронежский государственный технический университет, профессор кафедры полупроводниковой электроники и наноэлектроники, тел. +7 4732 43-76-95, andreistrogonov@mail.ru.

где верхний индекс Т отражает влияние температуры; t_1 и t_2 – среднее время наработки на отказ при температуре T_1 и T_2 соответственно; T_1 , T_2 – нормальная и повышенная температура соответственно (например, $T_1(^{\circ}K) = 55 \text{ °C} + 273$, $T_2(^{\circ}K) = 125 \text{ °C} + 273$); $k = 8,167 \cdot 10^{-5} \text{ эВ}/^{\circ}K$; E_a – энергия активации для наблюдаемого процесса старения; P_1 , P_2 – рассеиваемая мощность на переходе; θ_1, θ_2 – термические коэффициенты сопротивления (ТКС) «переход – окружающая среда».

На рис. 1 показана экстраполяция результатов ускоренных испытаний, проводимых при температуре 167,5 °С, на условия эксплуатации при температуре 70 °С при $K_y^{\rm T}$ =188 и E_a =0,7 эВ [6].

Если в качестве ускоряющего фактора использовать напряженность электрического поля, то для выявления дефектов оксида коэффициент ускорения равен [1, 7–9]:

$$K_{y}^{U} = \exp(\beta \Delta U_{n}), \qquad (6)$$

где $\Delta U_n = U_1 - U_2$, $U_2 < U_1$ (для различных серий ПЛИС используются разные напряжения), U_2 – повышенное напряжение при испытаниях, U_1 – рабочее напряжение, например, 13,2 и 12 В или 3,96 и 3,3 В.

Зарубежные компании-производители ПЛИС в качестве моделей коэффициента ускорения (ускоряющий фактор – повышенное напряжение) используют следующие выражения:

- Atmel [7]: $K_v^U = \exp(\beta \Delta U_n)$, где $\beta = 0, 5-1$ [B⁻¹];
- Altera [8, 9]: для подзатворных диэлектриков МОП-транзисторов – $K_{yq} = \exp(\beta/h_q/10 nm\Delta U_n)$, где h_q – толщина подзатворного диэлектрика МОП-транзистора (при технологических проектных нормах более 90 нм, $E_a = 0,7$ эВ, $\beta = 3,2$ [B⁻¹]); для межслойных диэлектриков металлизации ($E_a = 0,7$ эВ, $\beta = 2,0$ [B⁻¹])– $K_{vмg} = \exp(\beta\Delta U_n)$.

Экспериментальную интенсивность отказов ПЛИС ведущие компании (в частности Atmel, Xilinx, Altera, QuickLogic, Actel) оценивают с использованием статистики χ^2 (хи-квадрат) [1–11]:

$$\lambda = \frac{\chi^2(\mathbf{P}^\circ, \mathbf{m})}{2\mathbf{N}\Delta tK_{\gamma}} \cdot 10^\circ = \frac{\mathbf{U}}{\mathbf{N}\Delta tK_{\gamma}} \cdot 10^\circ, \tag{7}$$

где U =
$$\frac{\chi^2(P^\circ, m)}{2}$$
, χ^2 — распределение хи-квадрат (табули-

рованная величина, зависящая от доверительной вероятности и числа отказов); Р°- доверительная вероятность, связанная с уровнем значимости CL соотношением

личество отказавших ИС; **N** — общее число испытуемых ИС; **K**_y — обобщенный коэффициент ускорения

> **Рис.** 1. «Ваннообразная» кривая интенсивности отказов, когда ускоряющим фактором выступает температура (K^v_v = 188)

ΦΟΚΥC ΗΟΜΕΡΑ

Таблица 1. Интенсивность отказов с использованием статистики χ^2 с 60%-ным уровнем значимости по результатам ускоренных испытаний КМОП ПЛИС Microsemi

исло казов	Приборо- часы	ФИТ	MTTF
1	3,66·10 ⁸	5,53	1,81·10 ⁸
0	3,97·10 ⁷	23,05	4,34·10 ⁷
1	9,16·10 ⁷	22,04	4,54·10 ⁷
0	2,29·10 ⁷	39,98	2,51·10 ⁷
0	4,50·10 ⁷	20,32	4,92·10 ⁷
2	7,51·10 ⁷	41,40	2,42·10 ⁷
0	7,93·10 ⁸	1,15	8,66·10 ⁸
2	5,24·10 ⁸	5,93	1,69·10 ⁸
1	2,89·10 ⁸	7,00	1,43·10 ⁸
0	2,95·10 ⁸	3,11	3,22·10 ⁸
	исло казов 1 0 1 0 2 0 2 1 0 2 1	исло Приборо- казов часы 1 3,66·10 ⁸ 0 3,97·10 ⁷ 1 9,16·10 ⁷ 0 2,29·10 ⁷ 0 4,50·10 ⁷ 2 7,51·10 ⁷ 0 7,93·10 ⁸ 2 5,24·10 ⁸ 1 2,89·10 ⁸	исло казовПриборо- часыФИТ13,66·1085,5303,97·10723,0519,16·10722,0402,29·10739,9804,50·10720,3227,51·10741,4007,93·1081,1525,24·1085,9312,89·1087,0002,95·1083,11

(например, $K_y = K_y^T K_y^U$); Δt – время испытаний; $N\Delta t K_y$ – приведенное полное время испытаний или эквивалентные приборо-часы (в зарубежной литературе принята аббревиатура EDH – Equivalent Device Hours). Значения EDH обычно приводятся к температуре 55 °C.

Использование формулы (7) предполагает рассмотрение значения U как случайной величины, распределенной по закону χ^2 [6, 8, 9]. При отсутствии отказов за время испытаний (n=0, m=2) их интенсивность описывается экспоненциальным распределением времени до наступления отказа. Оценка интенсивности отказов ПЛИС, полученная с использованием распределения χ^2 , справедлива только для периода нормальной работы устройства на кривой интенсивности отказов.

Таблица 2. Интенсивность отказов с использованием статистики χ² с 60%-ным уровнем значимости по результатам ускоренных испытаний ПЛИС Altera

Серия ПЛИС	Техноло- гия, нм	Приборо- часы	Число отказов	Интенсивность отказов, ФИТ (при CL=60%)
Arria 10 (2017 год)	20	685 500	0	52,1
Stratix V (2014 год)	28	628714	0	47,0
Cyclone V (2014 год)	28	1138666	0	24,5
Stratix IV (2014 год)	40	1 2 2 2 3 1 1	2	42,0
Stratix III (2014 год)	65	1 947 828	0	11,1
FLEX10KA (2014 год)	300/350	330000	0	53,7

Рассмотрим порядок расчета интенсивности отказов, когда при испытаниях используются два ускоряющих фактора: повышенная температура и повышенное напряжение питания [3]. За рубежом используют понятие HTOL – High Temperature Operating Life Test (метод 1005, 1006 по MIL-STD - 883). В отечественной практике под HTOL понимают электротермотренировку (ЭТТ), статическую или динамическую, которая проводится при предельных электрических нагрузках (обычно 20-30% номинального напряжения питания V_{cc}) и предельной температуре (125-150 °C). Время испытаний не превышает 1000 ч. ЭТТ ускоряет процесс старения БИС (в том числе ПЛИС) и предназначена для «выжигания» ранних отказов и повышения надежности

оставшихся в партии изделий. Динамическая ЭТТ связана с отказами в результате износа с низкой энергией активации (порядка 0,3–0,4 эВ).

Условия и режимы проведения ЭТТ для определения интенсивности отказов зарубежные компании устанавливают самостоятельно, однако в большинстве случаев они аналогичны указанным в MIL-HDBK-217.

Результаты ускоренных испытаний КМОП ПЛИС типа FPGA компании Microsemi с 60%-ным уровнем значимости и энергией активации отказов $E_a = 0,7$ эВ, приведенные к температуре 55 °С, представлены в табл. 1 [11]. А в табл. 2 отражены результаты ускоренных испытаний КМОП ПЛИС типа FPGA компании Altera с 60%-ным уровнем значимости и энергией активации отказов

> 0,7 эВ, приведенные к температуре 70 ℃.

Доминирующими механизмами отказов для ПЛИС серии Stratix V, изготовленных по 28-нм КМОПпроцессу (High Performance) кремниевой фабрики TSMC являются: пробой подзатворного диэлектрика (0,53 эВ); пробой межслойных диэлектриков (0,56 эВ); сквозные пустоты (1 эВ). Серия Stratix V работает при напряжениях питания V_{cc} 0,85 или 0,9 В в зависимости от скорости ПЛИС. При ускоренных испытаниях использовались напряжения 1,1 и 1,2 В. Общая интенсивность отказов с применением

ИНТЕЛЛЕКТ. КАЧЕСТВО.

AO «МИКРОВОЛНОВЫЕ СИСТЕМЫ» Москва, ул. Нижняя Сыромятническая, 11 Тел. (495) 917-21-03 Факс (495) 917-19-70 E-mail: mwsystems@mwsystems.ru www.mwsystems.ru

- СОВРЕМЕННОЕ ПРОИЗВОДСТВО И ТЕХНОЛОГИИ
- ОПТИМАЛЬНОЕ СООТНОШЕНИЕ ЦЕНА/КАЧЕСТВО

АКЦИОНЕРНОЕ ОБЩЕСТВО «МИКРОВОЛНОВЫЕ СИСТЕМЫ»

Таблица 3. Интенсивность отказов с использованием статистики χ^2 с 60%-ным уровнем значимости по результатам ускоренных испытаний ПЛИС Xilinx

Приборо-часы при температуре испытаний 125 °С (годы выпуска 2018/2019)	Интенсивность отказов, ФИТ (при CL = 60%, годы выпуска 2018/2019)
1496698/1411811	8/10
1016149/1054884	11/13
1051651/1133597	11/11
1036231/1027456	11/6
1808112/2036838	6/2
1086123/1086123	11/11
	Приборо-часы при температуре испытаний 125 °С (годы выпуска 2018/2019) 1496 698/1411811 1016 149/1054884 1051 651/1133 597 1036 231/1027 456 1808 112/2036 838 1086 123/1086 123

статистики χ² при нуле отказов составила 47 ФИТ. Согласно отчету за I квартал 2017 года интенсивность отказов ИС этой же серии, изготовленной в TSMC по аналогичному техпроцессу, составила 38,5 ФИТ [8, 9].

Результаты ускоренных испытаний КМОП ПЛИС от Xilinx с 60%-ным уровнем значимости и энергией активации отказов 0,7 эВ, приведенные к температуре 55 °С, представлены в табл. 3 [12, 13].

При переходе на новые технологические поколения ПЛИС по мере уменьшения геометрических размеров транзисторов и напряжения питания важную роль стала играть проблема сбоев, вызванных ионизирующим излучением. Эти виды отказов можно сравнить с такими проблемами, снижающими надежность современных БИС, как электромиграция, времязависимый пробой подзатворного диэлектрика и др.

Современные ПЛИС, выпускаемые по нанометровым проектным нормам, как на основе СОЗУ или флеш-памяти, так и с токопроводящими перемычками (antifuse), в той или иной мере подвержены радиационным воздействиям, что может ограничивать их применение в будущем [14]. Одиночные сбои переключения ячеек памяти, проявляющиеся в обратимом изменении ее состояния, вызванные ионизирующим излучением (Single

Event Upset – SEU), рассматривались раньше как проблема, актуальная только для аэрокосмических вариантов применения. Однако за последние годы выяснилось, что эта проблема распространилась и на БИС, работающие в атмосфере и даже на уровне Земли, стала одним из основных источников системных сбоев радиоаппаратуры.

Рассмотрим ситуацию на примере ПЛИС компании Xilinx. В табл. 4 представлены сведения об интенсивности программных ошибок (которые принято измерять

Таблица 4. Интенсивность программных ошибок λ для ПЛИС Xilinx разных технологических поколений при экспериментальных испытаниях и в условиях атмосферного нейтронного воздействия

Технология, нм / серия ПЛИС	LA сечение ствия в ра	NSCE, взаимодей- счете на бит	ФИЛ (тепловь	λ, ФИТ/Мбайт епловые нейтроны)		λ, ФИТ/Мбайт (альфа-частицы)		λ в реальном времени, ФИТ/Мбайт	
	CRAM	Ошибки, %	CRAM	Ошибки, %	CRAM	Ошибки, %	CRAM	Ошибки, %	
180 нм / Virtex-E	1,12·10 ⁻¹⁴	±18	-	-	-	-	181	±20	
65 нм / Virtex-5	6,70·10 ⁻¹⁵	±18	-	-	-	-	165	-13, +15	
45 нм / Spartan-6	1,00·10 ⁻¹⁴	±18	21	-11, +13	88	-50, +100	177	-10, +11	
28 нм / Kintex-7, Virtex-7	5,69·10 ⁻¹⁵	±18	1,1	-15, +18	43	-41,+80	50	-20, +26	
16 нм / UltraScale+	6,67·10 ⁻¹⁶	±18	0,35	-16, +20	0,1	-20, +20	5	-27, +39	

Разработка и производство конденсаторов

оксидно-электролитические алюминиевые конденсаторы K50-15, K50-17, K50-27, K50-37, K50-68, K50-74, K50-76, K50-77, K50-80, K50-81, K50-83, K50-84, K50-85, K50-86, K50-87, K50-88, K50-89, K50-90, K50-91, K50-92, K50-93, K50-94, K50-95(чип), K50-96, K50-98

объемно-пористые танталовые конденсаторы K52-1, K52-1M, K52-1БМ, K52-1Б, K52-9, K52-11, K52-17, K52-18, K52-19, K52-20, K52-21, K52-24, K52-26(чип), K52-27(чип)

оксидно-полупроводниковые танталовые конденсаторы К53-1А, К53-7, К53-65(чип), К53-66, К53-68(чип), К53-71(чип), К53-72(чип), К53-74(чип), К53-77(чип), К53-78(чип)

суперконденсаторы (ионисторы) К58-26

накопители электрической энергии на основе модульной сборки суперконденсаторов

Система менеджмента качества сертифицирована на соответствие требованиям ISO 9001

Россия, 427968, Удмуртская Республика, г. Сарапул, ул. Калинина, 3 Тел.: (34147) 2-99-53, 2-99-89, 2-99-77, факс: (34147) 4-32-48, 4-27-53 e-mail: elecond-market@elcudm.ru, http://www.elecond.ru в ФИТах/Мбайт) для ПЛИС на базе СОЗУ от Xilinx разных технологических поколений. Эти данные были получены по результатам ускоренных испытаний с использованием источника нейтронов LANSCE (Los Alamos Neutron Science Center, Лос-Аламосский центр по изучению физики нейтронов) и измерений атмосферного нейтронного воздействия, проводимых в реальном времени (на уровне системы) в местностях, различающихся высотой над уровнем моря (горные вершины и под землей), в соответствии с методикой JESD89A/89-1A [13]. При измерениях учитывались ошибки в ПЛИС, вызванные одиночными сбоями ячеек конфигурационной памяти CRAM вследствие воздействия ионизирующего излучения.

При испытаниях использовалась специальная экспериментальная установка LANSCE для имитации радиационной среды земной атмосферы.

Ошибки в ПЛИС оказывают влияние на работу системы, вызывая функциональные прерывания (Single Event Functional Interrupt – SEFI). Для оценки влияния ионизирующего излучения на проекты, реализованные в базисе ПЛИС, применяется такое понятие, как «фактор уязвимости устройства» (DVF). DVF для типичного проекта в ПЛИС составляет 5%, поскольку не все конфигурационные биты ПЛИС могут использоваться в проекте и из-за наличия критичных бит для реализуемой логической функции. В наихудшем случае DVF не превышает 10% сбоев, вызывающих программную ошибку.

Ранние ПЛИС Xilinx серии Virtex-II демонстрировали интенсивность программных ошибок на уровне 405 ФИТ/Мбайт и содержали около 10⁶ конфигурационных бит. Данные, представленные в табл. 4, показывают, что для ПЛИС, выпущенных по 45-, 28- и 16-нм проектным нормам, характерно устойчивое снижение интенсивности программных ошибок как в условиях воздействия тепловых нейтронов и альфа-частиц при экспериментальных испытаниях с использованием источника нейтронов LANSCE, так и при атмосферном нейтронном воздействии. Непрерывное снижение интенсивности программных ошибок стало возможным в результате применения инновационных конструкторскотехнологических решений, например при разработке ячейки памяти, обладающей иммунитетом к SEU.

ЗАКЛЮЧЕНИЕ

Для оценки экспериментальной интенсивности отказов ПЛИС по результатам квалификационных испытаний в производственных условиях используется статистика χ^2 , которая справедлива только для периода нормальной работы ИС на «ваннообразной» кривой интенсивности отказов, когда «ранние» отказы исключены, а также при больших значениях эквивалентных

приборо-часов (EDH). Результаты ускоренных испытаний (ускоряющий фактор – температура в сочетании с повышенным напряжением), проведенных зарубежными компаниями-производителями, показали сверхнизкую интенсивность отказов ПЛИС, не превышающую 200 ФИТ, что гарантирует 100 тыс. ч безотказной работы.

По мере уменьшения минимальных геометрических размеров элементов и снижения напряжения питания современных ПЛИС сбои, вызванные ионизирующим излучением, становятся все более важным фактором, влияющим на характеристики ИС. Для снижения интенсивности сбоев компании внедряют как схемотехнические, так и технологические решения, направленные на повышение стойкости ПЛИС к внешним воздействиям.

ЛИТЕРАТУРА

- 1. Строгонов А. Оценка долговечности БИС по результатам ускоренных испытаний // Технологии в электронной промышленности. 2007. № 3. С. 10–16.
- Строгонов А., Цыбин С., Городков П. Расчет количественных показателей надежности цифровых БИС с использованием справочника MIL-HDBK-217F и программы MTBF Calculator фирмы ALD // Компоненты и технологии. 2015. № 1. С. 6–12.
- Silicon Solution Company. Oki Electric Industry Co., Ltd. '04 Hand Book for QUALITY/RELIABILITY. May 11, 2004.
- 4. ADI Reliability Handbook. monitoring_predication.pdf. http://www.analog.com
- http://www.analog.com/media/en/technicaldocumentation/user-guides/UG-311.pdf
- https://www.onsemi.com/pub/Collateral/HBD851-D.PDF.
 Quality & Reliability Handbook
- 2010 Atmel Corporation. Rev.: ATMELQHBK http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1. 188.4679&rep=rep1&type=pdfAtmel Quality Handbook
- 8. Reliability Report 57. 1H 2014. www.altera.com
- 9. Reliability Report. 1H 2017. www.intel.com
- 10. Quality & Reliability Guide. February 2001. www.actel. com
- 11. Reliability Report. RT0001. Microsemi FPGA and SoC Products. – www.microsemi.com
- 12. Device Reliability Report. Second Half 2017. UG116 (v10.8). March 22, 2018. – www.xilinx.com
- 13. Device Reliability Report. Second Half 2018. UG116 (v10.10). March 22, 2019. – www.xilinx.com
- 14. ПЛИС и параллельные архитектуры для применения в аэрокосмической области. Программные ошибки и отказоустойчивое проектирование / Под ред. Кастеншмидт Ф., Реха П.; перевод с англ. и научная редакция Цыбина С.А, Быстрицкого А.В, Строгонова А. В., Городкова П.С. – М.: ТЕХНОСФЕРА, 2018. 326 с.