ЮТЕРНЫЕ ВСТРАИВАЕМЫЕ ТЕХНОЛОГІ

ТЕНДЕНЦИИ РАЗВИТИЯ*

А.Рыбаков, Н.Слепов rybakov@rtsoft.msk.ru, nslepov@online.ru 0

ОДНОПЛАТНЫЕ И МИКРОМОДУЛЬНЫЕ КОМПЬЮТЕРЫ

На одноплатных и микромодульных компьютерах основано большинство решений, используемых во встраиваемых компьютерных технологиях (ВКТ). В предлагаемой второй части статьи по этой тематике кратко рассмотрены особенности основных типов и конструкций компьютеров в модульном исполнении, таких как COM, ETX, ETXexpress, E²Brain, X-board, DIMM-PC, PC/104, PC/104+, EPIC и др. [7]**.

Компьютеры в модульном исполнении (СОМ) — семейство малогабаритных компьютеров, использующих готовые модули, с размещением всех необходимых для работы компонентов на одной плате. Последнее позволяет разработчикам сконцентрироваться на реализации специализированных узлов системы, существенно сокращая время выхода продукта на рынок и увеличивая срок его жизни. СОМ-компьютеры имеют высокую степень масштабируемости благодаря взаимозаменяемости модулей, что позволяет наращивать вычислительные возможности системы так же просто, как и оперативную память в ПК заменой старого процессорного модуля новым более производительным модулем. Семейство СОМ может использовать как шины PCI, PCI-X и параллельную шину ATA (старое поколение), так и PCI Express и последовательную шину ATA (новое поколение). Более подробно об этом — в разделе "Стандарт COM Express".

Спецификация ЕТХ — расширенной встраиваемой технологии, поддерживаемая многими производителями, физически отличается от стандартов PICMG 1.0 и 1.2, но так же продлевает жизнь шин ISA и PCI. Спецификация ETX определяет компьютерный модуль, монтируемый на плате-носителе. Модуль содержит МП, его интерфейс, интерфейсы памяти и расширения (ISA и 32-разрядный 33 МГц PCI) и общую периферию (клавиатуру, мышь, видео, IDE, Ethernet). Плата-носитель при этом должна реализовать функции ввода/вывода и нужные межсоединения. Важно то, что старый МП-модуль может быть заменен новым, как только позволит развитие технологии. МПмодуль имеет размеры 100x100x12 мм. Различные варианты ETX-решений приведены в каталоге [7].

Спецификация ETXexpress. Новый стандарт COM-компьюте-

ров - ETXexpress - обеспечивает повышение производительности и гибкости благодаря использованию шины PCI Express. Она программно совместима с шиной РСІ, которая может поддерживаться 32-разрядным интерфейсом PCI 2.х (частота шины FSB Рис.1. Модуль ETXexpress 400/533 МГц).

Модуль ETXexpress имеет размеры 95х125 мм. Он подключен к плате-носителю 160-контактным разъемом, поддерживающим передачу данных с частотой до 5 ГГц. Тепло отводится через контактные площадки на модуле и пластину-теплораспределитель.

ETXexpress — одноплатный модуль (рис.1), на котором размещены компоненты, необходимые для формирования полнофункционального ПК [7]. Структура модуля, построенная на базе чипсетов Intel 915GM и ICH6-M, используемых для работы с МП Celeron M и Pentium M, более подробно рассмотрена в работе [1].

Компьютеры типа E²Brain — семейство встраиваемых компьютеров в модульном исполнении на основе RISC-процессоров (см. врезку), которое идеально подходит для приложений, требующих высокой производительности, низкого энергопотребления и развитых коммуникационных интерфейсов. Модули E²Brain размером 75 × 115 мм устанавливаются на плату-носитель, используют RISCпроцессоры компаний Intel, Freescale, AMCC и Motorola с тактовой частотой от 80 до 800 МГц и базовые интерфейсы РСІ (32-разряда, 33/66 МГц). Возможна установка дополнительных интерфейсов: LPC, I²C и CAN. Потребляемая при этом мощность от 2 до 12 Вт (с пассивным теплоотводом) [7].

Компьютеры типа X-board – семейство маленьких встраиваемых компьютеров в модульном исполнении на основе х86 и RISC-процессоров, которое используется там, где требуется низкое энергопотребление, средняя производительность и сверхмалые размеры. Размер модуля 49х68 мм, используются МП компаний Intel, AMD, ARM (от 266 до 600 МГц), базовые интерфейсы PCI (32 разряда, 33 МГц) и дополнительные интерфейсы: LPC, USB, COM, IDE, Ethernet, MMC и GPIO. Потребляемая мощность от 1,5

Компьютеры типа DIMM-PC — семейство самых маленьких встраиваемых компьютеров в модульном исполнении на основе МП х86, которое используется для множества простых процессов мониторинга и управления, где требуется сверхнизкое энергопотребление и сверхмалые размеры. Модуль DIMM-PC (размером 40х68 мм) использует МП компаний Intel, AMD (от 40 до 133 МГц), базовый интерфейс ISA и устанавливается в обычные DIMM-разъемы. Они имеют интерфейсы для внешних устройств IDE и FDD, а некоторые из них — Ethernet и USB. Потребляемая мощность от 1,5 до 2,2 Вт (33 МГц) и 3,5 Вт (100 МГц) [7].

Компьютеры форматов PC/104, PC/104+, PCI-104. РС/104 — популярный тип небольшого одноплатного компьютерного модуля, форм-фактор которого разработан компанией Атрго Computers (США) в конце 1980-х годов, а его спецификация была опубликована в 1992 году. Сейчас она поддерживается Консорциумом РС/104 (более 150 членов).

PC/104 основан на шине ISA (рис. 2), модернизированной для встраиваемого промышленного использования (с ограничением по току). Размеры модуля $3.6" \times 3.8"$ (91.4×96.5 мм). Он может рабо-

^{*} Продолжение. Начало см.: "ЭЛЕКТРОНИКА: HTБ", 2006, №3, с.24-32.

^{**} Список литературы см. в первой части статьи.

тать автономно, так как содержит центральный процессорный узел (ЦПУ), а также устройства, выполняющие общие функции и подключаемые к внутренним разъемам слева и справа (рис. 2): последовательные (СОМ1/СОМ2) и параллельный (LPT) порты, клавиатуру, мышь, видеоконтроллер и другие модули (например, GPSприемник, ЛВС и модули беспро-

Рис.2. Модуль РС/104

водной связи). Номер 104 указывает на число контактов разъема, конструкция которого допускает установку одного модуля поверх другого (как мезонинной карты) и не требует использования объединительной панели.

PC/104+, или PC/104-Plus, является расширением PC/104, использующим шину PCI. Для поддержки 33-МГц шины PCI был добавлен 120-контактный разъем. Аналогично PC/104, PC/104+ допускает расширение путем установки одного модуля поверх другого, и так до четырех модулей в стеке. Это могут быть модули: аудио, видео, 10/100 Ethernet, плат ввода/захвата изображения, управления показом фильмов и картами с цифровыми сигнальными процессорами (DSP).

Осуществить последовательную миграцию с ISA на PCI поможет применение модуля PCI-104, использующего только шину PCI и одобренного Консорциумом PC/104.

Компьютеры типа ЕРІС. Расширить состав применяемых модулей и достичь большей гибкости можно, используя оба модуля (РС/104 и РС/104+) на одной малогабаритной материнской плате (плате-носителе) или SBC. Эта концепция привела к созда-

нию SBC типа EPIC - встраивае- Рис.3. Модуль EPIC

мой платформы для промышленных вычислений. Размеры платы EPIC 115 \times 165 мм (рис.3), типы используемых МП — Intel Celeron/Pentium M с частотами от 400 МГц до 2 ГГц [7].

Таблица 1. Типы встраиваемых компьютеров

Обозначение	Тип	Размеры, мм	Площадь, см ²	Применение	
3U CPCI	SBC	100x160	160	АК, ВТ, ЗУ, И, ПА, С, СБ	
AMC	Модуль	72x185	133	3У, С	
COM Express	СОМ	125x95	118,75	ВТ, ИР, ИТ, МП, ПА	
Intel ECX	SBC	105x146	153,3	МП, ПА, Т, TT	
EBX	ВМП	146x203	296	ΠΑ, ΠΤ, ΤΤ	
EPIC	SBC	115x165	190	И, МП, ПА, С, СБ, ТТ	
ESB 3,5"	SBC/BMП	102x145	147	И, ПА, ПТ	
ETX	Модуль	95x114	108	АК, ВТ, И, МП, ПА, ПТ, С, СБ, ТТ	
JRex	SBC/BMП	102x147	150	И, ПА, ПТ, Т	
MinilTX	SBC/BMП	170x170	289	ПТ	
PC/104	Модуль	90x96	86,4	AK, BT, ΠA, TT	
P-n-R G3	Модуль	100x160x13,5	160	АК, ВТ, ЗУ, ИТ, МП, ПА, СБ, Т	
PrPMC	Модуль	74x149	110	АК, ВТ, МП, ПА, С	
SM 480	Модуль	66x85	56	АК, ВТ, ЗУ, И, МП, ПА, ПТ, С, СБ, Т, ТТ	
SM 855	Модуль	70x115	80	АК, ВТ, ЗУ, И, МП, ПА, ПТ, С, СБ, Т, ТТ	
SOM 144	Модуль	67,6x101,9	69	И, МП, ПА, С, СБ, ТТ	
STX	Модуль	95,9x90,2	87	ЗУ, И, МП, ПА, ПТ, С, СБ, Т	

Примечание. ВМП — встраиваемая материнская плата; P-n-R — Plug-n-Run; SM — SmartModule; AK — аэрокосмические приложения, BT — военная техника, ЗУ — запоминающие устройства, И — инструменты, ИТ — измерительная техника, ИР — игры и развлечения, МП — медицинские приборы, ПА — промышленная автоматика, ПТ — потребительские товары, С — связь, СБ — системы безопасности, Т — транспорт, ТТ — торговые точки.

Типов компьютеров с малым форм-фактором, используемых в ВКТ, больше, чем рассмотрено здесь. Более полный их перечень с указанием размеров плат и площади (меньше 300 см²), а также области применения приведены в табл. 1 (см.: Embedded Computing Small Form Factors. — www.intel.com/technology/ecsff/index.htm).

Проведенный здесь обзор показывает, что PCI — это базовая технология для подавляющего большинства встраиваемых компьютерных решений, позволяющая использовать 32- и 64-разрядные приложения с поддержкой в широком диапазоне скоростей передачи по шине от 33 до 533 МГц.

Переход (благодаря внедрению стандартов PICMG 1.0 и 1.2) на архитектуру с пассивной объединительной панелью даст возможность плавно уйти от архитектуры встраиваемых материнских плат к архитектуре с объединительной панелью. Это откроет широкие возможности для модернизации решений по мере развития технологии, в том числе и по пути параллельного использования или последовательной замены шин ISA на PCI, PCI на PCI-X, PCI-X на PCI Express (см. след. раздел о стандартах), продлив жизнь PCI соответственно на 5—7—10 лет в зависимости от отрасли, где используются такие приложения.

Этот вывод выглядит еще более убедительным, учитывая внедрение стандарта PICMG 2.0 (CompactPCI), дающего выход на формат "Еврокарта", и стандарта PICMG 2.16, увеличивающего эффективность CompactPCI, благодаря возможности создания поверх нее оверлейной сети пакетной Ethernet-коммутации.

Переход на PCI-архитектуру в малогабаритных стандартах типа COM (компьютеры в модульном исполнении), XBoard, E²Brain, ETX, ETXexpress, PCI/104+, PCI-104, EPIC и других, наряду с использованием CompactPCI, дает возможность еще больше расширить круг пользователей шины PCI и способствует продлению ее жизни.

Спрос на указанные модули с PCI-архитектурой (кроме модулей COM) останется в ближайшие 3—5 лет на том же уровне, тогда как спрос на модули типа COM предположительно будет линейно расти (рис. 4).

Внедрение PCI Express приведет к смене базовой внутриплатной модели компьютера для всех популярных встраиваемых систем: VME, CompactPCI, ATX, ETX, PICMG 1.2, PC104+ и т.д.

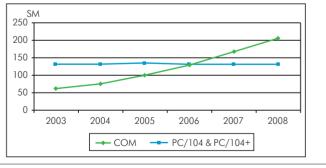


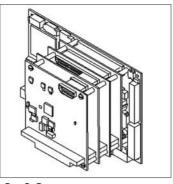
Рис.4. Основные тенденции развития некоторых типов SBC

НОВЫЕ СТАНДАРТЫ SBC НА БАЗЕ PCI EXPRESS

Разработка нового стандарта PCI Express оказала влияние и на конструкцию одноплатных компьютеров SBC. Например, появились стандарты PICMG 1.3, COM Express и EPIC Express.

Стандарт PICMG 1.3. Спецификация PICMG 1.3 SHB Express (20.08.05) сняла ограничения стандартов PICMG 1.0/1.2 и SHB на полосу пропускания, вызванные использованием параллельной шины, путем замены ее высокоскоростным интерфейсом с последовательной связью. Спецификация сохранила совместимость с кар-

тами PCI и PCI-X, но обеспечила для SHB новые возможности, такие как IPMI (IPMB), Serial ATA, USB- и Ethernet-соединения с задней панелью.


Карта PCI Express имеет два стандартных размера: полный — $126,4 \times 338,6$ мм (В \times Д, имеет по длине четыре торцевых ламельных разъема: А, В, С, D) и половинный — $126,4 \times 167,6$ мм (имеет два торцевых разъема: А и В). Разъемы А и В подводят питание и соединяют карты PCI Express со звеньями связи объединительной панели. В результате панель может работать с 1-, 4-, 8- и 16-кратным мультиплексированием полос передачи. Разъем С имеет контакты для подвода дополнительного питания, а разъем D дает возможность использовать 32-разрядную PCI/PCI-X шину, поддерживаемую пассивной объединительной панелью.

Конструкции объединительной панели и полноразмерной карты с разъемами С и D дают проектировщикам определенную гибкость в использовании старых отработанных решений и продвинутых особенностей новых интерфейсов с высокоскоростной последовательной передачей.

Стандарт COM Express. Стандарт PICMG COM.0 Computer On Module (R1.0, 10.07.05) определяет новую генерацию одноплатных компьютеров в модульном исполнении, использующих теперь шину PCI Express и интерфейс типа последовательный ATA, а также другие современные интерфейсы: USB 2.0, GE и Serial DVO (SDVO). Синонимом COM Express является компьютер типа ETX Express компании Kontron, который был описан в работе [1].

Стандарт EPIC Express. Документ EPIC Express [11] — плод совместных усилий группы компаний: WinSystems, VersaLogic, Octagon Systems, Micro/sys и Amro по стандартизации расширения архитектуры наращиваемых (в виде стека) компьютеров SBC типа PCI Express в качестве следующей генерации SBC.

Он определяет последовательную шину связи следующего поколения PCI Express для SBC EPIC. Эта шина была адаптирована для стековой архитектуры (рис.5), используемой в компьютерах типа EPIC. Причиной такой адаптации было желание обеспечить мост для будущих разработок, продолжая использовать огромное количество доступных модулей расширения типа PC/104.

Puc.5. Вид наращиваемых в виде стека модулей EPIC Express

Стандартом EPIC Express определен тип разъемов и их положение на плате EPIC, а также модули расширения типа PC/104+. В плате EPIC параллельная шина PCI заменяется последовательным разъемом PCI Express, а разъем PC/104+ (для модулей, устанавливаемых в виде стека) заменен стековым разъемом PCI Express. Причем EPIC Express поддерживает только два формата последовательной передачи PCI Express: однополосную (четыре x1) и четырехполосную (два x4), реализованные в виде двух конфигураций — стандартной и полной.

Стандартная конфигурация заменяет устройства PC/104+, используя четыре полосы x1 (A-D) и позволяя устанавливать в стек до четырех таких устройств. При этом требуется только один 28-контактный разъем. Полная конфигурация имеет не один, а три таких разъема, установленных в линию один за другим так, что их общая длина не превышает длины старого разъема PC/104+. Эта конфигурация может использовать оба формата — (четыре x1) и (два x4).

Высота стека сохраняется на уровне 16,8 мм, что допускает применение карт старых форматов. Важен только порядок модулей в

Список используемых сокращений

10FC — 10 Gigabit Fiber Channel — *10-гигабитный оптоволоконный канал* (ОВ-интерфейс).

10GE — 10 Gigabit Ethernet — *10-гигабитный Ethernet* — новый стандарт для технологии Ethernet [13].

2eSST – Two Edged Synchronous System Trap – *двухстороннее синхронное системное прерывание* (в МП) – синхронный протокол для VMEbus (объединительной панели), имеет 3 фазы: посылка адреса, передача данных (синхронная, без ожидания подтверждения приема) и стадия завершения, обеспечивает скорости передачи 160, 266 и 320 Мбайт/с.

3GIO — Third Generation Input/Output — *третье поколение (систем) ввода-вывода* — система ввода-вывода, имеющая ведущий мост, соединяющий МП с коммутатором, осуществляющим серию соединений конечных точек.

ADF — Advanced Differential Fabric (connectors) — *усовершенствованная дифференциальная структура (разъемов)* — структура дифференциальных ВЧ-разъемов, используемых для передачи данных на картах типа CompactPCI Express.

AMC — Advanced Mezzanine Card — усовершенствованная мезонинная плата — спецификация, разработанная Консорциумом PICMG и превосходящая спецификацию PMC.

AGP — Accelerated Graphics Port — *быстродействующий графический порт* — 66/100/133/266-МГц порт, разработан компанией Intel для поддержки систем трехмерной графики.

ASI—AS — Advanced Switching Interconnect — улучшенные коммутируемые соединения — технология коммутируемых соединений (расширение технологии PCI Express)

ATA – AT bus Attachment – *контроллер шины АТ* – контроллер жесткого диска для шины АТ, новое имя, присвоенное интерфейсу IDE [13]; имеет 6 модификаций для различных скоростей передачи.

ATCA – AdvancedTCA – Advanced Telecommunication Computing Architecture – *усовершенствованная архитектура телекоммуникационных вычислений* – название базового стандарта PICMG 3.х на конструктив телекоммуникационного оборудования следующего поколения, разработанного Консорциумом PICMG.

ATX – Advanced Technology Extended – *расширенная усовершенствованная технология* – стандартный формат материнской платы [13].

BLT – Block Transfer – пересылка блока [13].

СЕМ – Contract Electronic Manufacturer – п*роизводитель/изготовитель электронной аппаратуры по контракту/на заказ.*

CISC – Complex Instruction Set Computer/Computing – процессор с полным набором команд (в противоположность МП RISC) [13].

COM — Computer On Module — *компьютер в модульном исполнении* — один из типов одноплатных компьютеров.

COTS – Commercial Off-The-Shelf – *готовый коммерческий продукт* (ПО, решение).

СРСІ — CompactPCI — шина PCI для промышленных приложений в формате Eurocard, описана в стандарте PICMG 2.0.

CRC – Cyclic/Cyclical Redundancy Check – *проверка с циклическим избыточным кодом* – алгоритм или схема обнаружения ошибок передачи данных [13].

DIMM-PC – DIMM-slot Personal Computer – ПК, вставляемый в разъем (модуля памяти) типа DIMM – одноплатный полнофункциональный ПК-модуль, вставляемый в разъем типа DIMM.

DSP – Digital Signal Processor – *цифровой сигнальный процессор* (ЦСП) [13].

E²Brain — Embedded Electronic Brain — *встроенный электронный мозг/интеллект* — семейство встраиваемых компьютеров в модульном исполнении на основе RISC-MП.

EBX – Embedded Board Expandable – *встраиваемая плата расширения* – стандартная спецификация для встраиваемых одноплатных компьютеров малого размера (146x203 мм), поддерживающих карты PC/104+ и PCMCIA [13].

eHM — *Enriched Hard Metric* — улучшенный жесткий метрический (разъем) — специализированный разъем с ключами для передачи сигналов ввода/вывода и электропитания на карту CompactPCI Express.

EISA – Extended Industry Standard Architecture – *расширенная стандартная промышленная архитектура* – стандарт 32-битной архитектуры шины ПК, расширение шины ISA [13].

EPIC – Embedded Platform for Industrial Computing – *встраиваемая платформа для промышленных вычислений* – серия одноплатных компьютеров с интерфейсами ввода-вывода.

ETX – Embedded Technology Extended – *расширенная технология встраиваемых модулей* – форм-фактор, конструктив, формат, спецификация фирмы Kontron. **FC** – Fiber Channel – (*интерфейс*) *волоконно-оптического канала* [13].

стеке. Самым нижним должен быть модуль полной конфигурации. Таблица 2. Сводный список стандартов и платформ На рис. 5 показан такой стек с одним полным и двумя стандартными модулями. Как и в PCI Express, дифференциальный последовательный интерфейс EPIC Express рассчитан на скорость 2,5 Гбит/с.

НОВАЯ ГЕНЕРАЦИЯ ПЛАТФОРМ НА БАЗЕ КОММУТИРУЮЩИХ СТРУКТУР

Развитие технологий в последнее время и общая тенденция перехода к использованию коммутируемых структур последовательного типа вместо параллельной шины привели к появлению ряда стандартов на новые типы платформ, выпущенных организациями PICMG и VITA. Важным моментом этого развития стала большая общность и пересекаемость платформ. Среди этих платформ есть три несомненных лидера: VXS (VME с коммутируемой структурой) на базе спецификации VITA 41 и VPX-ERDI на базе спецификаций VITA 46 и VITA 48. В табл. 2 приведен сводный список стандартов с указанием поддерживаемых ими платформ и используемых типов коммутирующих структур [10].

Опишем кратко три основные спецификации этих стандартов: VME VXS, VPX и ATCA, чтобы понять их общность и различие, сильные и слабые стороны.

СПЕЦИФИКАЦИЯ VME VXS (VITA 41)

Спецификация VME VXS — *шина VME с коммутируемой структурой* последовательного типа (VXS) - стандарт ANSI (VITA 41.x), объеди-

с коммутируемыми структурами

	RapidIO	PCI Express+ASI	Ethernet	InfiniBand	StarFabric
VME VXS	VITA 41.2	VITA 41.4	VITA 41.3	VITA 41.1	-
VPX	VITA 46.3	VITA 46.4	VITA 46.6	VITA 46.8	-
ATCA	PICMG 3.5	PICMG 3.4	PICMG 3.1	PICMG 3.2	PICMG 3.3
CompactPCI	PICMG 2.18	PICMG COMe	PICMG 2.16	-	PICMG 2.17
XMC	VITA 42.2	VITA 42.3	-	-	-
AMC	PICMG AMC.4	PICMG AMC.1	PICMG AMC.2	-	-

няющий параллельный VMEbus со всеми типами коммутируемых структур (см. табл. 2). Первоначально (январь 2002 - VXS SIG в рамках MCG) это были InfiniBand (VXS.1) и RapidIO (VXS.2), предложенные VSO как стандарт VITA 41, затем 1/10GE (VXS.3) и 3GIO (VXS.4), известный как PCle, и, наконец, StarFabric (хотя на данный момент стандарт отсутствует). В результате группа спецификаций VXS выглядит сейчас так:

- VITA 41.0 (VXS.0) Base Specification (R1.11, основная спецификация - конструктив, питание и пр.);
- VITA 41.1 (VXS.1) 4X InfiniBand Protocol on VXS (R1.9);
- VITA 41.2 (VXS.2) 4X Serial RapidIO Protocol on VXS (R1.9);
- VITA 41.3 (VXS.3) VXS 1000 Mbps Baseband IEEE 802.3 Protocol Layer (R0.1);
- VITA 41.4 (VXS.4) VXS 4X PCI Express Protocol Laver Standard (R0.2);

Список используемых сокращений (продолжение)

FPGA — Field Programmable Gate Array — матрица программируемых логических вентилей [13].

FTTH — Fiber-To-The-Home — *оптическое волокно к дому* (технология обеспечения сервиса абонента в сетях PON).

GE — Gigabit Ethernet — *гигабитный Ethernet* — стандарт для технологии Ethernet [13].

GPIO - General-Purpose Input/Output (system) - универсальная подсистема ввола-вывола.

IPMB — Intelligent Platform Management Bus — шина управления интеллектуальной платформой.

IPMC - Intelligent Platform Management Controller - контроллер управления интеллектуальной платформой.

IPMI – Intelligent Platform Management Interface – интерфейс управления интеллектуальной платформой.

ISA – Industry Standard Architecture – стандартная промышленная архитектура – стандартизованная 8/16-битная версия шины АТ [13].

LPC – Low Pin Count (interface) – (интерфейс) с уменьшенным числом выводов – интерфейс шины связи МП с периферийными устройствами, установленными на материнской плате и не имеющими разъема.

LVDS – Low Voltage Differential Signaling – дифференциальная сигнализация пониженным напряжением - техника сигнализации пониженного энергопотребления для ЖК-дисплеев.

MCG – Motorola Computer Group – Компьютерная группа компании Motorola [13]. **ON** — Optical Network — *оптическая сеть* [13].

PCI – Peripheral Component Interconnect – интерфейс периферийных устройств – расширенная локальная шина (ЛШ), независимая от МП, использует мост для связи с другими ЛШ [13].

PICMG - PCI Industrial Computer Manufacturer Group - Консорциум производителей промышленных компьютеров с шиной РСІ – объединяет более 450 компаний (на 2006 г.), образован в 1994г.; название стандартов Консорциума PICMG 1.x, 2.x, 3.x.

PICMG 1.0 — стандарт PICMG, определяющий разъем PCI/ISA для пассивной (задней) объединительной панели.

PICMG 1.2 — стандарт PICMG, определяющий только PCI (ePCI-X) интерфейс между шинами PCI/PCI-X или шину PCI/PCI-X.

PICMG 2.0 — стандарт PICMG, определяющий формат CompactPCI (Eurocard PCI форм-фактор).

PICMG 2.16 — стандарт PICMG, определяющий спецификацию пакетной коммутации через объединительную панель в рамках архитектуры CompactPCI.

PICMG 3.0 - стандарт PICMG, определяющий архитектуру AdvancedTCA (ATCA).

PSB - Packet Switching Backplane - пакетная коммутация через (заднюю) объединительную панель — (коммутация пакетов с помощью коммутатора Ethernet между модулями CompactPCI через объединительную панель (PICMG 2.16).

RISC — Reduced Instruction Set Computer — компьютер с сокращенным набором команд — тип компьютера или МП (альтернатива компьютерам CISC) [13].

RTM - Rear Transition Module - задний переходной модуль - задняя плата/карта, устанавливаемая в заднюю часть полки и сопрягаемая с фронтальной платой/картой через разъемы.

RTOS - Real-Time Operating System - операционная система реального времени (OCPB) [13].

SAN — Storage Area Network — распределенная сеть хранения (данных).

SBC – Single Board Computer – *одноплатный компьютер* – класс полнофункциональных ПК, собранных на одной печатной плате.

SDVO — Serial Digital Video Output — последовательный цифровой выход видеосигнала - спецификация высокоскоростного (1-2 Гбит/с) видеоинтерфейса компании Intel, имеющая функцию выхода видеосигнала TV-Out для ПК.

SHB — Systems Host Board — системная основная плата — плата, содержащая процессорную подсистему и шинный интерфейс.

ShMC – Shelf Management Controller – контроллер управления полкой/шасси (в стойке с оборудованием).

SISC — Streamlined Instruction Set Computer — компьютер с оптимизированным набором инструкций [13].

SST — Synchronous System Trap — *синхронное системное прерывание* (в МП).

UPM – Universal Power Connector – универсальный разъем электропитания разъем для подачи напряжения питания на плату типа CompactPCI Express.

VITA – VME International Trade Association – Международная торговая ассоциация VME (США), аккредитована в ANSI как организация по стандартизации (1984).

VME — Versa Module Eurocard — VERSAmodule Eurocard — Еврокарта с VERSA-мо-- стандарт карты с компьютерной шиной, разработан компаниями Motorola, Segnetics, Mostek и Thompson (1981) на основе шины VERSAbus.

VMEbus – VME-bus – *шина VME* – системная шина, работающая с 8-, 16-, 32разрядными МП (даже с различными МП одновременно), поддерживает скорости передачи данных 50 или 80 Мбайт/с с мультиплексором (Ver.1), работает также с 64-разрядными МП и поддерживает скорость передачи данных до 320 Мбайт/с (поддерживается Ассоциацией VITA).

VSO – VME Standard Organization – Организация по стандартизации VME.

VXS - VMEbus Switched (fabric) Serial - коммутируемая последовательная структура с шиной VMEbus (VITA 41).

XMC – Switch fabric Mezzanine Card – мезонинная плата с коммутируемой структурой — модуль, поддерживающий звено связи типа I²C и основные команды интерфейса IPMI (VITA 42).

- VITA 41.5 (VXS.5) Protocol Specification: Aurora (протокол компании Xilinx для соединений типа chip-to-chip);
- VITA 41.9 (VXS.9) Out of Band System & Chassis Management (проект ТУ на управление шасси);
- VITA 41.10 (VXS.10) Live Insertion Requirements for VITA 41 Boards (R1.0 Draft);
- VITA 41.11 (VXS.11) VXS Rear Transition Module Standard (R0.6.2). В отличие от наметившейся (в связи со стандартом VITA 34) тенденции к радикальному изменению формата карты и традиций VMEbus, стандарт VITA 41 преследовал другую цель: возродить лидирующую роль VMEbus с традиционным форматом 6U, используя достижения последних лет в виде коммутируемых структур последовательного типа. Это давало возможность сохранить преемственность решений и продлить действие уже вложенным инвестициям. Поэтому, в обеспечение возможности использования коммутируемых структур, при разработке стандарта предлагалось:
- выбрать и добавить высокоскоростной разъем на карте VME64x в позиции P0/J0;
- установить две Еврокарты формата 6U x160 мм x 6HP, снабженные высокоскоростными разъемами, которые могли бы работать как коммутатор типа "кросс-бар";
- переделать объединительную панель так, чтобы она могла поддержать все новые достижения.

Таким разъемом стал MultiGig RT-3 компании Тусо Electronics, допускающий скорость передачи выше 10 Гбит/с и число сочленений не менее 250. Установка, наряду с 18 обычными Еврокартами, снабженными дополнительными разъемами Р0 для поддержки 4-полосного дуплексного потока (4×1 Гбайт/с), еще двух коммутирующих Еврокарт, снабженных (вместо разъемов Р1 и Р2) 18 высокоскоростными разъемами Р0, позволяет одновременно коммутировать/управлять 18 четырехполосными дуплексными потоками обычных карт (в дополнение к обычным потокам по параллельной шине VMEbus). Ясно, что объединительная панель должна быть 20-слотной.

Поддержка базовым стандартом VITA 41 вариантов, рассчитанных на разные протоколы коммутируемых структур, позволяет применять поддерживающие их карты, распознаваемые с помощью ключей. Реализовать такое решение достаточно сложно. Один из вариантов — использовать программируемые матрицы FPGA. Они дают возможность быстрой реконфигурации, т.е. обеспечивают такое гибкое решение, которое годится как для обычных, так и коммутирующих карт.

СПЕЦИФИКАЦИЯ VPX (VITA 46)

Спецификация VPX, или VITA 46 (февраль 2005), направленная, как и VITA 41, на поддержку лидирующей роли VMEbus в военных и аэрокосмических приложениях, основана на другом подходе. Она, поддерживая формат 6U, включила новый формат 3U, необходимый для компактных приложений, и полностью заменила все разъемы новым высокоскоростным (6,25 Гбит/с) разъемом MultiGig RT-2 (7 рядов контактов, 192 пары). Как и VITA 41, VITA 46 использует преимущества коммутируемых структур последовательного типа: RapidlO, PCI Express+AS и InfiniBand. Она также включила поддержку целого ряда технологий ввода-вывода: цифровое видео, 10GE, Serial Attached SCSI, Serial ATA, RocketlO (FPGA).

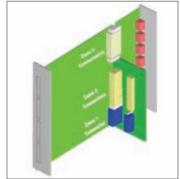
В результате пришлось разработать новую универсальную карту, выполняющую роли обычной и коммутирующей карты, и отказаться от совместимости с предыдущими стандартами на уровне карт и объединительной панели. Однако такая совместимость частично обеспечена разработкой гибридной объединительной панели, которая имеет четыре слота типа VME64x, два слота типа VITA 41 и 14 слотов типа VITA 46. Новая карта допускает установку на ней мезо-

нинных модулей PMC/XMC стандартной длины. Продумана также система гашения электростатического разряда с помощью шины заземления, соединенной с разъемом RT-2.

Карта 6U имеет 160 дифференциальных информационных пар контактов, из которых только 32 контакта используются для коммутируемых структур, и восемь одиночных контактов, что больше, чем имела плата VME64x (205 одиночных контактов). Карта 3U имеет 64 дифференциальные пары контактов и 16 одиночных контактов, что позволяет использовать одну мезонинную плату на SBC формата 3U.

Общая концепция VITA 46 включает использование оптического ввода/вывода, что позволит значительно снизить уровень электрических помех и наводок. Для этой цели блоки P5 и P6 в нижней части карты могут заменяться оптическими разъемами.

Хотя шесть слотов в гибридной объединительной панели можно использовать для установки старых карт, считается, что со временем производители перейдут целиком на карты VITA-46 и отдадут, в будущем, предпочтение картам 3U, комплектуемым мезонинными картами. В этом смысле можно предположить, что в дальнейшем пользователи будут выбирать одно из двух альтернативных решений: VITA 41 (для обычных приложений, ориентированных на карты 6U) или VITA 46 (для компактных приложений, ориентированных на карты 3U).


СПЕЦИФИКАЦИЯ ADVANCEDTCA (ATCA)

АdvancedTCA — усовершенствованная архитектура телекоммуникационных вычислений — это стандарт PICMG 3.0 (12.02, R1.0) на конструктив телекоммуникационного оборудования следующего поколения, разработанного Консорциумом PICMG и одобренного всеми ведущими производителями связного оборудования [12]. Своим вторым релизом (03.05, R2.0) он покрывает разработку конструкции шасси, объединительной панели и формата карт, обеспечение питания и охлаждения, взаимосвязь и взаимодействие блоков, RASM и организацию различных интерфейсов.

Базовые элементы. Учитывая специфику приложений, стандарт рассчитан на использование 19", 23" и 600-мм (ETSI) стоек. Учитывая насыщенность рабочих карт компонентами, конструктив рассчитан на использование двух типов фронтальных карт (BxГхШаг): $6U \times 160 \times 20,3$ мм (0,8") и $8U \times 280 \times 30,5$ мм (1,2") и одной задней карты (RTM) $8U \times 70 \times 30,5$ мм, сопрягаемой с фронтальной картой разъемами. Плата 8U поддерживает установку до четырех стан-

дартных СМС или РМС шириной 75 мм.

Задний торец плат разделен на три зоны (рис.6). Первая (нижняя) используется для установки разъема питания и для служебных целей. Вторая — для установки пяти разъемов Р20-Р24 для поддержки транспортного интерфейса данных. Третья (верхняя) — для установки разъема пользователя (его тип пока не определен) для операций ввода/вывода.

<u>Рис.6. Схема расположения</u> разъемов карты <u>ATCA</u>

Менеджмент. Конструктив АТСА обеспечивает развитый менеджмент и сервисное обслуживание всех внутренних систем: питания, охлаждения, контроля состояния модулей и передачи данных. В частности, осуществляется низкоуровневое сервисное обслуживание аппаратного обеспечения с помощью контроллеров полки/шасси (ShMC) и интеллектуальной платформы (IPMC), допускающих "горячую" вставку/замену карт/плат в слоты (которых может быть до вось-

ми). Питание карт/плат/модулей — универсальное дублированное 48/60 В с DC-DC-преобразователями на картах/платах/модулях. Высокоуровневое сервисное обслуживание осуществляется через Интернет с помощью протоколов TCP/IP и SNMP. Охлаждение воздушное — контролируемое датчиками температуры.

Внутренний транспорт данных. Общая схема транспорта основана на использовании четырех интерфейсов, передающих данные внутри карты/платы и между плат через объединительную панель:

- шинный интерфейс (64 сигнальные пары, допускает использование Ethernet 10/100/1000Base-T);
- интерфейс коммутируемой структуры (120 сигнальных пар, обслуживающих до 16 полос);
- интерфейс канала обновления информации (10 сигнальных пар), используется для связи между двумя слотами;
- интерфейс сигнала синхронизации (6 сигнальных пар).
 Для последовательной коммутируемой структуры допускается использование трех топологий:
- двойной звезды, управляющей 16 слотами, из которых 14 выделенные:
- сдвоенной двойной звезды, допускающей управление основной и резервной коммутирующими структурами;
- полносвязной сети.

Дополнительные спецификации. Консорциум PICMG в дополнение к базовой спецификации 3.0 (ATCA) разработал ряд сопутствующих спецификаций:

- PICMG 3.1. AdvancedTCA. Ethernet. R1.0, 2003 определяет использование Ethernet (включая GE) и Fiber Channel (FC) с ATCA;
- PICMG 3.2. AdvancedTCA. InfiniBand. R1.0, 2003 определяет использование InfiniBand с ATCA;

- PICMG 3.3. AdvancedTCA. StarFabric. R1.0, 2003 определяет использование StarFabric с ATCA;
- PICMG 3.4. AdvancedTCA. PCI Express. R1.0, 2003 определяет использование PCIe и AS с ATCA;
- PICMG 3.5. AdvancedTCA. RapidIO. R1.0, 2005 определяет использование RapidIO с ATCA;
- PICMG 3.6. AdvancedTCA. Packet Routing Switch (PRS). R1.0, 2006 — определяет использование маршрутизирующего коммутатора пакетов с ATCA;
- РІСМG (в стадии разработки). МістоАТА определяет системную архитектуру, которая использует мезонинные карты АМС, вставляемые непосредственно в объединительную панель без модификации:
- РІСМG (в стадии разработки). АТСА300 определяет стандартный подход в реализации оборудования на базе АТСА, совместимого с 300 мм стандартом для стоек ANSI, что уменьшает размер фронтальных карт и исключает использование задних карт-модулей RTM.

Основные особенности АТСА. Резюмируя, можно сказать, что АТСА — первая в мире открытая телекоммуникационная платформа, рассчитанная на применение в беспроводных, проводных и оптоволоконных приложениях, широко использующая коммутационные структуры последовательного типа и поддержанная всеми ведущими производителями встраиваемого связного оборудования.

АТСА рассчитана на терабитный уровень трафика, стандартный системный менеджмент, изменяемые топологии. Она допускает резервирование, фронтальный и задний ввод/вывод, высокую степень масштабируемости.