ЭЛЕКТРОННЫЕ СВЧ-КОМПОНЕНТЫ -

БАЗА НАСТОЯЩИХ И БУДУЩИХ РАДИОЛОКАЦИОННЫХ СИСТЕМ

С начала 80-х годов прошлого столетия усилиями ведущих специалистов ОАО "Корпорация "Фазотрон - НИИР" преодолено традиционное многолетнее отставание научно-технического уровня отечественных бортовых радиолокационных систем (БРЛС) от зарубежных аналогов. Ученым и руководителям Корпорации удалось не только сформулировать новую концепцию построения современных БРЛС, но и сплотить для решения этой задачи мощный научно-технический потенциал. В результате появилась возможность оснастить высокоэффективной техникой отечественные вооруженные силы и создать основу для массированного продвижения на мировой рынок конкурентоспособного высокотехнологичного продукта. Один из важнейших факторов успеха Корпорации - научно-технический прорыв в направлении создания электронных СВЧ-компонентов и функционально завершенных блоков на их основе.

Разработка БРЛС 80-х годов потребовала решения принципиально новых технических задач и выполнения специфических требований к приемопередающему каналу: обеспечения высокой средней и импульсной мощности, широкой полосы рабочих частот, низкого уровня собственных шумов, большого динамического диапазона, повышенной надежности, минимальных габаритов и массы при большом числе функций обработки СВЧ-сигналов. Все постав-

ленные задачи были решены благодаря созданию нового поколения изделий электронной СВЧ-техники: модулей и комплексированных устройств, выполненных на базе последних достижений теории и технологии электровакуумных и полупроводниковых приборов, а также гибридно-интегральной технологии твердотельных устройств. Эти изделия позволили значительно улучшить электрические параметры оборудования за счет оптимизации структуры модулей, рассматриваемых как завершенное функциональное устройство, а также схем и конструкций узлов, сопряжения допусков на их электрические параметры при стыковке в составе модулей. За счет сокращения Канащенков А.И., Копылов В.В., Рогов В.Я.

до минимума различных соединений и оптимизации режимов питания и работы элементов повышена надежность аппаратуры, а благодаря обеспечению взаимозаменяемости модулей — ее ремонтопригодность. Разработка миниатюрных узлов и их размещение в одном корпусе позволили улучшить массогабаритные характеристики оборудования.

Созданные Корпорацией БРЛС для самолетов МИГ-29 и Су-27 базировались на комплекте новых СВЧ-модулей, характеристики которых превосходили мировой научно-технический уровень. Яркий пример — СВЧ-модуль "Чегет". Он представляет собой мощный многорежимный усилитель мощности излучаемого сигнала сантиметрового диапазона длин волн (оконечный каскад передатчика), выполненный на основе мощной многорежимной ЛБВ. Модуль обеспечил режимы с различными длительностями импульсов и скважностями, вплоть до непрерывного режима без увеличения мощности потребления от первичного источника питания. Он позволил решить задачи обнаружения цели и управления оружием с помощью одного передатчика, что привело к существенному уменьшению массогабаритных характеристик системы. При этом функциональная схема приемопередатчика, его структурные схемы и система параметров модулей разрабатывались как единый комплекс с учетом критерия обеспечения максимальных тактико-технических характеристик БРЛС при минимальных массогабаритных характеристиках. За создание и серийное освоение комплекта СВЧмодулей для БРЛС самолетов Миг-29 и Су-27 группа наиболее отличившихся специалистов в 1988 году была удостоена Государственной премии.

Таблица 1. Основные характеристики семейства усилителей СВЧ-мощности для бортовых и наземных РЛС

	Назначение (класс)						
Параметр	Сверхлегкие бортовые, вертолеты	Легкие бортовые, катера	Легкие бор- товые, круп- ные катера	Средние бортовые, ПВО	Тяжелые бортовые, корабли	Наземные	
Диапазон частот	Х	Х	Х	Х	Х	K	
Полоса рабочих частот, МГц	200-400	До 700	200-400	До 700	700	500	
Импульсная мощность, кВт	2,5-6,0	4,0-5,0	4,0-6,0	8,0-12,0	15,0-25,0	30,0	
Мощность средняя, Вт	250-300	500	1000-1500	2500	5000	2500-5000	
Фазовый шум, дБ/Гц	-100	-100	-100	-100	-100	-100	
Шумы в паузе, дБ⋅Вт/Гц	-200	-200	-200	-200	-200	-200	
Первичная трехфазная сеть, В Гц	200x400	200x400	200x400	200x400	200x400	200x400	
КПД, %	25-30	25-30	25	25	25	35	
Масса, кг	9,5	10,8	17,0	25,0-30,0	30,0-35,0	_	
Удельная мощность, Вт/кг	32	46	59	83	143	-	
Охлаждение	Воздух	Воздух	Жидкость	Жидкость	Жидкость	Жидкость	
Расход хладагента	120 м ³ /ч	160 м ³ /ч	7 л/мин	10 л/мин	15 л/мин	15 л/мин	
Потребляемая мощность от первичной сети, кВт	1,0	2,0	5,0	10,0	20,0	20,0	

d

Таблица 2. Основные характеристики мощных малогабаритных многорежимных малошумящих усилителей мощности для бортовых доплеровских РЛС

Тип усилителя	Р _{вых. имп,} кВт	Р _{ср. тах,} Вт	Диапазон частот	Ширина рабочего диапазона частот, %			Освоение серийного производства, год
ММУ-КПУ-02	2,5	220	Х	5,6	Воздушное	24,5	1994
МУУ-КПУ-02М	4,0	450	Х	6,0	Воздушное	27,8	2001
K001-02	4,0	1000	Х	4,2	Жидкостное	18,5	2000
FX01-02	6,0	1500	Х	5,4	Жидкостное	19,7	2001

Однако ведомственная разобщенность предприятий-разработчиков не позволила провести комплексную интеграцию законченных функциональных блоков в полном объеме. С целью укрепления сотрудничества предприятий-разработчиков в условиях резкого сокращения возможностей НИИ бывшего Министерства электронной промышленности, занятых работами в области СВЧ-электроники, с учетом собственного и зарубежного опыта была образована Корпорация "Фазотрон", в которую вошли 26 предприятий, в том числе пять электронной промышленности, способных разрабатывать и выпускать функционально законченные, аппаратурно-ориентированные блоки БРЛС. Кроме того, в структуре института Корпорации было создано научно-производственное подразделение, обеспечивающее разработку и выпуск мощных вакуумных СВЧ-приборов, вакуумных модуляторных ламп и ламп электронных стабилизаторов.

СОВРЕМЕННОЕ СОСТОЯНИЕ РАДИОЭЛЕКТРОННЫХ СВЧ-КОМПО-НЕНТОВ, ПРОИЗВОДИМЫХ КОРПОРАЦИЕЙ

Усилители СВЧ-мощности

К одной из важнейших составляющих успеха Корпорации можно отнести создание сверхминиатюрных мощных усилителей СВЧ-мощности для БРЛС, которые по основному, общепризнанному критерию — удельной средней мощности излучения — в 5—10 раз превосходят лучшие зарубежные аналоги. Так, если на протяжении нескольких последних десятилетий уровень удельной средней мощности всех серийных систем, в том числе и отечественных, лежал в пределах 9,2—12,6 Вт/кг, этот показатель передатчиков нового поколения, созданных специалистами Корпорации, составил 98 Вт/кг. Естественно, следствием такой миниатюризации явилось радикальное изменение принципов конструирования РЛС — размещение мощного СВЧ-усилителя на основании антенны, приведшее к появлению нового эксплуатационного качества аппаратуры и возможности применения усилителей СВЧ-мощности практически на любом носителе.

В результате анализа имеющихся и предполагаемых носителей, позволяющих обеспечить необходимый уровень потребляемой мощности от первичной сети, были сформулированы требования к усилителям СВЧ-мощности (табл.1). Показано, что потребности любого носителя могут обеспечить шесть однотипных усилителей СВЧ-мощности с выделенными X- и K-диапазонами рабочих частот и потребляемой от первичной сети мощностью 1—20 кВт. Усилители выполнены на основе много- и однорежимных ЛБВ, производимых подразделениями Корпорации. Фотографии типовых малогабаритных многофункциональных усилителей СВЧ-мощности с жидкостным и воздушным охлаждением для бортовых РЛС представлены на рис.1, а их характеристики приведены в табл.2.

ЛБВ для усилителей СВЧ-мощности

Требования к усилителям СВЧ-мощности в полном объеме определили и требования к ЛБВ для конкретного типа усилителя. Как уже отмечалось, ограниченные возможности предприятий Министерства электронной промышленности по созданию мощной СВЧ-электроники, диктат сроков и цен на разработку и выпуск продукции,

низкое качество и невозможность обеспечить при разработке аппаратуры оптимальные массогабаритные характеристики, а также зарубежный опыт крупных фирм-разработчиков радиоэлектронных систем, имеющих свои отделения по разработке аппаратурно-ориентированной СВЧ-техни-

ки, побудили руководство Корпорации в середине 1999 года выделить ассигнования на формирование собственной научно-производственной базы по разработке и производству аппаратурно-ориентированных изделий мощной вакуумной СВЧ-электроники, а также мощных модуляторных ламп и ламп электронных стабилизаторов. Понятно, что причина этого шага — не избыток денег, а острая необходимость. Было закуплено новое импортное оборудование, созданы сложнейшие высокотехнологичные производства, включая катодное, керамическое, высоковакуумное, термическое и др., сформирован высококвалифицированный научно-производственный коллектив, обеспечивший в предельно сжатые сроки разработку и выпуск восьми новых СВЧ-приборов. Сегодня примерно в 95% продукции Корпорации используются ЛБВ собственного производства, основные параметры и внешний вид которых представлены в табл. 3, 4 и на рис. 2, 3.

Многофункциональные высокостабильные задающие генераторы

В структуре Корпорации — два предприятия электронной промышленности, занимающиеся разработкой и производством многофункциональных высокостабильных задающих генераторов: ЗАО "Алмаз-Фазотрон" (Россия) и ЗАО "Фазотрон-Украина". Каждое из них использует свой научный задел, свои принципы построения и элементную базу. Основные функции и характеристики многофункциональных задающих генераторов приведены в табл.5, а внешний вид — на рис.4.

Кроме задающих генераторов эти предприятия разрабатывают и выпускают транзисторы и транзисторные усилители в модульном

Таблица 3. Характеристики мощных однорежимных ЛБВ

Renewern	Тип ЛБВ			
Параметр	"ШПИЛЬ"	"ФАГОТ"		
Рабочий диапазон частот	Х	K		
Полоса усиливаемых частот, МГц	>500	>500		
Выходная мощность импульсная, Вт	>4000	>30000		
Выходная мощность средняя, Вт	> 600	>1000		
Коэффициент усиления, дБ	>40	>50		
КПД с рекуперацией, %	≥ 28	≥ 35		
Напряжение замедляющей системы, кВ	14,5-15,5	24,0-26,0		
Напряжение смещения (ЛБВ в запертом состоянии), В	-360	-500		
Напряжение превышения (ЛБВ в открытом состоянии), В	750-850	1500		
Напряжение накала, В	6,3±5%	6,3±5%		
Импульсный ток катода, А	≤ 2,0	≤ 4,8		
Импульсный ток замедляющей системы, мА	≤ 300	≤ 800		
Масса, кг	≤ 7,0	≤ 7,5		
Габариты, мм	455×162×102	450×120×100		
Средняя наработка, ч	≥ 1000	≥ 1000		
Охлаждение	Воздушное	Жидкостное		
Расход охлаждающей жидкости, л/мин (расход воздуха, кг/ч)	(Не менее 200)	Не менее 8		
Тип фокусировки	Магнитная периодическая	Магнитная периодическая		
Стадия отработки	Серийное производство	Разработка 2003 год		

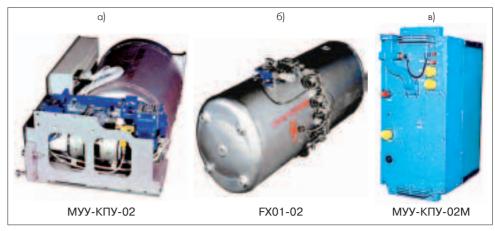


Рис. 1. Мощные (а), малогабаритные (б) и многорежимные малошумящие (в) усилители мощности (передатчики) для бортовых доплеровских РЛС

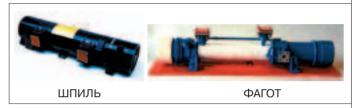


Рис.2. Мощные однорежимные ЛБВ

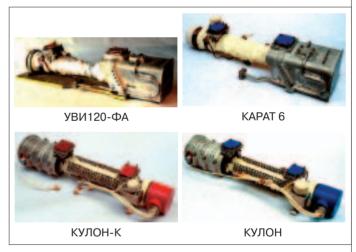


Рис.3. Мощные многорежимные ЛБВ

исполнении с выходной мощностью до 1 Вт в X-диапазоне, а также твердотельные приборы миллиметрового диапазона длин волн.

Специальные вакуумные и твердотельные приборы миллиметрового диапазона длин волн

Сегодня Корпорация интенсивно осваивает изделия миллиметрового диапазона длин волн, в том числе ряд РЛС, применяемых в вертолетах, головках самонаведения ракет, радарах наземных зенитно-ракетных пушечных комплексов. Естественно, для этой техники необходимы мощные как вакуумные, так и твердотельные СВЧ-компо-

ненты. Вакуумные приборы миллиметрового диапазона длин волн (клистроны, магнетроны, ЛБВ) сейчас производят бывшие предприятия электронной промышленности, технологическое оборудование которых практически полностью изношено. Именно поэтому Корпорация проводит программу создания научно-технического потенциала для разработки и производства мощных СВЧ-приборов миллиметрового диапазона. В основном эта программа должна быть завершена в 2003 году, после чего Корпорация с 2004-го сможет приступить к созданию самих приборов. Однако уже сейчас ученые Корпорации ведут поиск новых электродинамических и электронно-оптических систем миллиметрового диапазона. Получены патенты на новые электродинамические системы, оформлен ряд заявок на изобретения. Твердотельные приборы миллиметрового диапазона разрабатывают и производят ЗАО "Фазотрон-Украина" и ООО "Фазотрон-Т" (Россия).

ПЕРСПЕКТИВЫ РАЗВИТИЯ ЭЛЕКТРОННЫХ СВЧ-УСТРОЙСТВ ДЛЯ РАДАРОВ ОЧЕРЕДНОГО ПОКОЛЕНИЯ

Приемопередающие модули для БРЛС пятого поколения

БРЛС пятого поколения предусматривают применение активных фазированных антенных решеток (АФАР). Их функциональные преимущества очевидны. Но создание АФАР невозможно без сверхминиатюрных приемопередающих модулей, которых в АФАР используется несколько тысяч.

Приемопередающий модуль — это функционально завершенный аппаратурно-ориентированный СВЧ-блок, технические требования

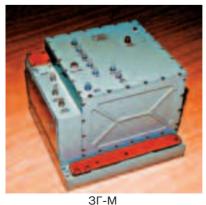


Рис.4. Многофункциональные высокостабильные задающие генераторы

đ

Таблица 4. Характеристики мощных многорежимных ЛБВ

Параметр	Тип ЛБВ					
Параметр	"УВИ120-ФА"	"KAPAT 6"	"КУЛОН-К"	"КУЛОН"	"КАРАТ 8"	
Рабочий диапазон частот	Х	Х	Х	Х	Х	
Полоса усиливаемых частот, МГц	> 500	> 600	> 600	> 400	> 700	
Выходная мощность импульсная, Вт	> 4000	> 6000	> 4000	> 4000	> 8000	
Выходная мощность средняя, Вт	> 1000	> 1500	> 400	> 400	> 2000	
Коэффициент усиления, дБ	> 40	> 40	> 40	> 40	> 42	
КПД с рекуперацией, %	≥ 25	≥ 25	≥ 25	≥ 35	≥ 35	
Напряжение замедляющей системы, кВ	15,0-16,0	14,5-15,5	14,5-15,5	14,5-15,5	18,0-19,0	
Напряжение смещения (ЛБВ в запертом состоянии), В	-360	-360	-360	-360	-400	
Напряжение превышения (ЛБВ в открытом состоянии), В	750-900	750-850	750-850	750-850	850-950	
Напряжение накала, В	6,3±5%	6,3±5%	6,3±5%	6,3±5%	6,3±5%	
Импульсный ток катода, А	≤ 1,8	≤ 2,2	≤ 1,8	≤ 1,8	≤ 2,2	
Импульсный ток замедляющей системы, мА	≤ 300	≤ 300	≤ 300	≤ 300	≤ 400	
Масса, кг	≤ 6,2	≤6,2	≤ 5	≤ 5	≤ 7,0	
Габариты, мм	455x162x102	455x162x102	467x120x120	467x120x120	490x120x120	
Средняя наработка, ч	≥ 1000	≥ 1000	≥ 1000	≥ 1000	≥ 1000	
Охлаждение	Жидкостное	Жидкостное	Принудительное воздушное	Принудительное воздушное	Жидкостное	
Расход охлаждающей жидкости, л/мин (Расход воздуха, кг/ч)	≥7	≥7	(≥ 225)	(≥ 225)	≥ 8	
Тип фокусировки	Магнитная периодическая	Магнитная периодическая	Магнитная периодическая	Магнитная периодическая	Магнитная периодическая	
Стадия отработки	Серийное производство	Серийное производство	Серийное производство	Ссерийное производство	Разработка 2003 год	

к которому и его функциональную схему могут предложить только разработчики БРЛС, а изготовить устройство в монолитно-интегральном исполнении — предприятия электронной промышленности. Наиболее подготовлен к созданию СВЧ-модуля для АФАР, с нашей точки зрения, — Томский НИИПП, развивающий арсенидгаллиевую технологию. Тесное сотрудничество Корпорации с этим предприятием приносит ощутимые технические результаты. Из института, выпускающего отдельные элементы с низким уровнем интеграции, Томский НИИПП становится предприятием, производящим сложнейшие составные части БРЛС в монолитно-интегральном исполнении. Сегодня его специалистами создан экспериментальный образец приемопередающего модуля и выпущено нескольких десятков таких СВЧ-блоков для проведения испытаний сегмента ан-

Таблица 5. Характеристики многофункциональных высокостабильных задающих генераторов

Параметр	Задающий генератор			
паратотр	3Г-1	3Г-2	ЗГ-М	
Метод синтеза	Прямой	Прямой	Косвенный	
Виды модуляции	АИМ, ФКМ, ЧМ	АИМ, ФКМ, ЧМ, ЛЧМ	АИМ, ФКМ, ЧМ, ЛЧМ	
Выходная мощность, мВт	500	500	600	
Относительная нестабильность выходных рабочих частот	±1x10 ⁻⁴	±1x10 ⁻⁴	±1x10 ⁻⁴	
Относительная нестабильность частоты опорного сигнала	±1x10 ⁻⁵	±1x10 ⁻⁵	±1x10 ⁻⁵	
Спектральная плотность мощности	2кГц−100	2кГц−100	2кГц−100	
частотного шума выходного сигнала,	5кГц−110	5кГц−110	5кГц−110	
дБ/Гц	10кГц−115	10кГц−115	10кГц−115	
	50кГц−120	50кГц−120	50кГц−120	
	100кГц−120	100кГц−120	100кГц−120	
	170кГц−120	170кГц−120	170кГц−120	
Рабочая температура, °C	-50+60	-50+60	-50+60	
Масса, кг	12	13	11	
Стадия отработки	Серийный	Изготовление	Изготовление	
	выпуск	ОПЫТНЫХ	ОПЫТНЫХ	
		образцов	образцов	

тенны. Это, с одной стороны, громадный выигрыш в технических параметрах, массе и габаритах, с другой — переход на твердотельную монолитную технологию, что позволит резко повысить надежность изделий, снизить их стоимость и достичь мирового уровня создаваемой техники.

Новые НЧ-приборы для сверхминиатюрных высоковольтных модуляторов передатчиков

Несмотря на значимые достижения Корпорации в области создания малогабаритных передатчиков (усилителей СВЧ-мощности), работы по их миниатюризации усиленно продолжаются. Так, для уменьшения объема и массы высоковольтного многофункционального модулятора в два-три раза, по заказу Корпорации разрабатывается двойной лучевой триод, который должен заменить два триода типа ГМИ-52Б. В 2003 году будет завершена разработка и начато производство нового лучевого триода с улучшенными характеристиками взамен ГМИ. Выпус-

кать эти изделия будут предприятия Корпорации "Фазотрон-БТ" и "Фазотрон-ВМЗ".

ЗАКЛЮЧЕНИЕ

Расширение функциональных возможностей, уменьшение массы радаров, сокращение финансовых затрат на разработку и времени для адаптации радара к различным носителям потребовали не только более глубокой интеграции функционально завершенных блоков — составляющих радара, но и более глубокой интеграции организационной структуры Корпорации с включением в ее состав предприятий бывшего Министерства электронной промышленности СССР. Без современных электронных СВЧ-компонентов невозможно создание современных радаров. А без современной высокотехнологичной базы и квалифицированного персонала невозможно создать современные СВЧ-компоненты. Формирование собственной базы разработки и производства современных специализированных аппаратурно-ориентированных изделий электронной техники должно стать хорошей основой для успешного продвижения Корпорации на мировой рынок радиотехнической продукции.