УСТРОЙСТВА СЕЛЕКЦИИ ЧАСТОТЫ НА ПАВ ФИЗИКО-ТЕХНИЧЕСКИЕ ПРИНЦИПЫ ПОСТРОЕНИЯ

А. Багдасарян, д.т.н. bagdassarian@mail.ru Т. Синицына, к.т.н.

Решение таких масштабных задач, как внедрение цифрового телевизионного вещания (ЦТВ), навигации (GPS/ГЛОНАСС), управления и связи в гражданских и оборонных сферах невозможно без одновременного развития электронной компонентной базы (ЭКБ), в частности, частотно-селективных компонентов. Важнейшим качествообразующим аппаратурным частотно-селективным компонентом является полосно-пропускающий радиочастотный фильтр. Он определяет такие важнейшие параметры назначения радиоэлектронной аппаратуры (РЭА), как помехозащищенность приемопередающих узлов, дальность действия и точность работы систем управления и связи, четкость "картинки" телевизионного изображения и отсутствие искажений передачи звукового сопровождения, верность определения координаты систем навигации и т.д.

кустоэлектронные радиокомпоненты (АРК) на поверхностных акустических волнах (ПАВ) - это наиболее перспективный класс радиочастотных фильтров в диапазоне частот от 20 до 2500 МГц. Важнейшей особенностью, определяющей быстрое внедрение акустоэлектронных радиокомпонентов в современные информационные системы, являются возможность совмещения процессов изготовления с микро- и нанотехнологиями, высокие температурная стабильность и надежность и малые массогабаритные характеристики.

В зависимости от области применения АРК к ним предъявляется совокупность различных требований. Так, при использовании АРК в трактах промежуточной частоты (ПЧ) они должны обеспечивать высокую прямоугольность амплитудно-частотной характеристики (АЧХ) в переходной области, малую неравномерность АЧХ в полосе пропускания и избирательность в полосах заграждения не менее 50 дБ. В ряде случаев (для систем обработки телевизионных сигналов) необходимо иметь характеристику группового времени запаздывания (ГВЗ) специальной формы. При этом жестких требований к уровню вносимого затухания в полосе пропускания не

предъявляется. При использовании АРК во входных каскадах РЭА основным требованием является обеспечение малого вносимого затухания (не более 6 дБ). Поскольку данные требования противоречивы с точки зрения физики процессов возбуждения, обработки и приема ПАВ, то конструктивные подходы к проектированию АРК для этих случаев существенно различаются (конструкции трансверсального типа и конструкции, работающие на основе переотражений).

По мере развития акустоэлектроники было предложено много принципов построения приборов на ПАВ. Были разработаны методы возбуждения и приема волн, отражения, волноводного распространения, фокусировки, которые легли в основу разработок целого ряда приборов, таких как полосовые фильтры, линии задержки, резонаторы на ПАВ и т.д. Элементом, осуществляющим возбуждение и прием акустической волны во всех типах приборов, является встречно-штыревой преобразователь (ВШП), представляющий собой решетку из металлических электродов, нанесенную на поверхность пьезоэлектрика. Другой важнейший элемент построения ряда приборов на ПАВ - это устройство, состоящее из группы металлических полосок, установленных на пути

распространения волны. Оно возбуждает вторичную волну, которая, в зависимости от конфигурации электродов, может быть смещена в пространстве относительно исходного положения или может распространяться в противоположном направлении (многополосковый ответвитель). Решетка из металлических электродов может служить также для отражения волны. Этот принцип используется при разработке резонаторных структур различных типов.

Конкретная конструкция частотно-избирательных элементов АРК, их пространственное объединение и тип используемого пьезоэлектрика определяются в основном требованиями к ширине полосы пропускания.

ВЫБОР ОПТИМАЛЬНОГО ПЬЕЗОЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА

Пьезоэлектрическая подложка – это основополагающий конструктивный элемент любого APK, ее физические свойства в значительной мере определяют основные параметры устройства: ширину полосы пропускания, вносимое затухание, затухание в полосе заграждения, уровень ложных сигналов, температурную и временную стабильность, размер пьезоэлемента, стоимость и т.п. Наиболее важными характеристиками материала являются коэффициент пьезоэлектрической связи k² и температурный коэффициент частоты (ТКЧ).

При выборе оптимального пьезоэлектрического материала для оценки относительной ширины полосы пропускания в первом приближении можно воспользоваться простым соотношением:

$$\frac{f_3}{f_0} \le \sqrt{\frac{4k^2}{\pi}} \quad ,$$

где f_0 – центральная частота; Δf_3 – абсолютная полоса пропускания по уровню 3 дБ; k^2 – коэффициент электромеханической связи ПАВ в пьезоэлектрике.

Знак равенства соответствует максимальному значению $\Delta f_3/f_0$ для ВШП в данном материале, обеспечивающему минимальное вносимое затухание. Расширение полосы пропускания сверх этой величины приводит к росту вносимого затухания, а уменьшение, связанное с увеличением числа электродов встречноштыревого преобразователя, может вызвать искажение характеристик фильтра за счет таких явлений, как регенерация ПАВ и межэлектродные отражения.

Из анализа основных параметров пьезоэлектриков (табл.1) можно сделать вывод, что одновременное удовлетворение требований большой k^2 /малый ТКЧ невозможно, и в каждом конкретном случае проектирования АРК выбирается компромиссное решение. Кроме того, при оценке уровня вносимого затухания устройства необходимо учитывать, что пьезоматериалы с большим k^2 имеют большие потери на распространение акустической волны.

ВЫБОР ОПТИМАЛЬНОЙ КОНСТРУКЦИИ ВШП

Встречно-штыревой преобразователь является основным элементом, определяющим частотно-избирательные свойства АРК (за исключением конструкции на основе продольно-связанных резонаторов, в которой полосу пропускания устройства определяет отражатель).

Основная центральная частота преобразователя равна $\omega_c = 2\pi \upsilon_o / (pS_e)$, где $\upsilon_o - эффективная скорость волны под электродной структурой; р – шаг электродов. На частотах, близких к <math>\omega_c$, активная

Таблица 1. Основные физические свойства пьезоэлектрических материалов

Материал	Ориентация	Скорость волны, м/с	Коэффициент электро- механической связи, k², %	Относительная диэлектрическая проницаемость, $\epsilon_{p}^{ {}^{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	TKЧ, ppm/°C
Ниобат лития LiNbO₃	YZ 128° YX/I 64° YX/I° 41° YX/I°	3488 3980 4690 4750	5,04 5,7 10 17	50,2 56,7 51,9 62,4	-95 -72 -70 -70
Танаталат лития LiTaO ₃	112° YX/I 36° YX/I°	3304 4214	0,66 5,4	47,9 50,2	-18 -35
Кварц	ST	3158	0,116	4,55	0

Приповерхностная акустическая волна (ППАВ).

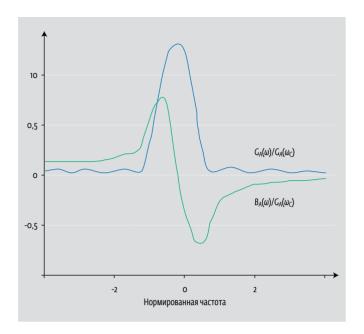


Рис.1. Пример динамической структуры информационных потоков в CAN-сети

составляющая проводимости излучения преобразователя равна:

$$G_a(\omega) = 8k^2C_sf_0N^2\sin^2(X)/X^2 = G_0(\sin(X)/X)^2,$$
 (1)

где $G_0 = 8k^2C_sf_0N^2$ – активная составляющая проводимости ВШП на центральной частоте, $X=\pi N_p(\omega-\omega_c)/\omega_c$; N_p – число периодов. Реактивная составляющая проводимости излучения вблизи ω, определяется выражением:

$$B_a(\omega) = G_0(\omega_c)(\sin(2X) - 2X)/2X^2.$$
 (2)

Результирующая реактивная составляющая проводимости преобразователя равна $\omega C_t + B_a(\omega)$, где C_t – емкость преобразователя (рис.1). Емкостная составляющая обычно намного превышает $G_3(\omega_c)$. Величина $G_3(\omega)$ максимальна при $\omega = \omega_c$, а $B_a(\omega_c)$ равна нулю (см. рис.1). Поэтому в большинстве практических случаев реактивную составляющую акустической проводимости $B_{a}(\omega)$ можно не учитывать.

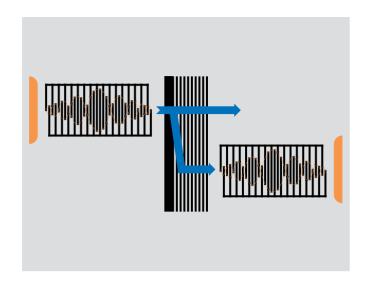
На практике обычно используются конструкции преобразователя, содержащие два, три или четыре электрода на период структуры (S_{ρ}) (табл.2).

Следует отметить, что электродные структуры с S_e=2 характеризуются максимальным уровнем переотражений волны и используются в конструкциях АРК, обеспечивающих малое вносимое затухание. В конструкциях трансверсального типа обычно используется электродная структура

Таблица 2. Параметры однородных преобразователей

S _e	Нормирован- ная емкость	Номер гармоники	Нормированная проводимость
2	1	1	2,871
3	1,155	1 2	2,231 2,231
4	1,414	1 2 3	3,111 0 3,111

с S_e=4, в которой уровень переотражений пренебрежимо мал (при коэффициенте металлизации в электродной структуре 0,5), что важно для обеспечения малой неравномерности АЧХ в полосе пропускания устройства.


Простейший ВШП имеет неизменный пространственный период, постоянную длину электродов по апертуре и реализует АЧХ вида sinx/x с низкой избирательностью (12 дБ). Поэтому для реализации высоких селективных требований необходимы различные методы взвешивания (амплитудное взвешивание или аподизация) ВШП, что достигается варьированием пространственного периода, длины, ширины электродов и т. д.

Наиболее просто взвешивание осуществляется в аподизованном ВШП с помощью изменения перекрытия длин соседних электродов в соответствии с заданной импульсной характеристикой. Преимущество метода - высокая разрешающая способность, поскольку взвешивание может производиться непрерывно в широком диапазоне. Основными недостатками аподизованных преобразователей являются дифракция акустической волны, излучаемой участками с малым перекрытием штырей, и фазовые искажения фронта поверхностной акустической волны из-за неравномерной металлизации по апертуре ВШП. Компенсация этих эффектов осуществляется как расчетными, так и конструктивными методами. Следует отметить, что из-за наличия паразитных эффектов применение двух аподизованных ВШП в одном акустическом тракте невозможно. При этом обеспечение высокой избирательности может быть достигнуто за счет применения двухканальной конструкции устройства с использованием многополоскового ответвителя (МПО), выравнивающего акустические фронты.

Кроме метода аподизации с целью получения частотной избирательности используются другие

Таблица 3. Основные типы конструкций ВШП и их сравнительные характеристики

Тип ВШП и способ взвеши- вания	Конструкция	Достоинства	Недостатки	Полоса пропу- скания, Δf ₃ , дБ	Коэф. прямоуг. АЧХ, Кп=40/3, дБ	Ослаб- ление сигнала, дБ
Неаподизованный эквиди- стантный с одинарными электродами	皿	Простота расчета	Низкая прямоугольность, большой уровень боковых лепестков	1,0-50,0	1,8	6-40
Неаподизованный экви- дистантный с расщеплен- ными электродами		Малый коэффициент отражения	Большая вероятность дефектов изготовления	1,0-50,0	1,8	6-40
ВШП со взвешиванием коэффициента металли- зации		Однородность фазового фронта по апертуре	Ограниченный выбор реализуемых АЧХ Большой уровень боковых лепестков АЧХ	1,0-10,0	2,5-3,5	6-20
ВШП со взвешиванием выборочным удалением электродов		Снижение фазовых искажений фронта и дифракции	Наличие ангармонических откликов в полосе режекции	0,2-3,0	1,9-3,0	5–10
ВШП с емкостным взвеши- ванием		Снижение фазовых искажений фронта и дифракции	Ограниченный выбор реали- зуемых АЧХ	5,0-20,0	1,3-1,9	4-15
Веерный неаподизованный	\\\\/	Высокий коэффициент прямоугольности	Большой уровень боковых лепестков АЧХ	3,0-30,0	1,15-2,0	10-20
Секциони– рованный	Ш	Возможность подавления объемных акустических волн	Наличие ангармонических откликов в полосе режекции	0,2-3,0	1,9-3,0	5–10
Аподизованный эквиди- стантный	444	Высокий коэффициент прямоугольности	Искажения фазового фронта Чувствительность к дифрак- ции ПАВ	0,3-35,0	1,1-3,0	6–20
Аподизованный с пас- сивными электродами вне зоны перекрытия электродов		Снижение фазовых искажений фронта	Искажение АЧХ из-за отражений от пассивных штырей Чувствительность к дифракции ПАВ	0,3-35,0	1,1-3,0	6-20
Аподизованный с расще- пленными индивидуально взвешенными электродами		Минимальные отражения Возможность реализации произвольных АЧХ и ГВЗ	Большая вероятность дефектов изготовления	0,3-35,0	1,1-3,0	6–20
ВШП с непрерывной импульсной характери- стикой		Эффективность возбуж- дения ПАВ	Дисперсия ПАВ	0,3-35,0	1,1-3,0	6–20

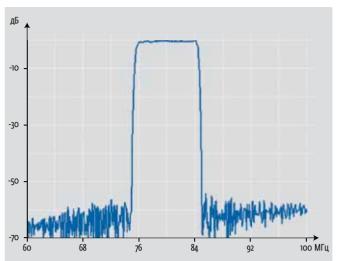
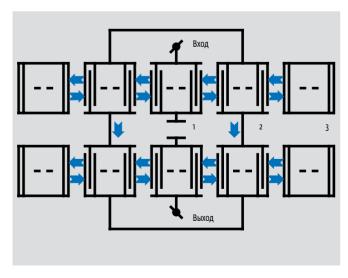
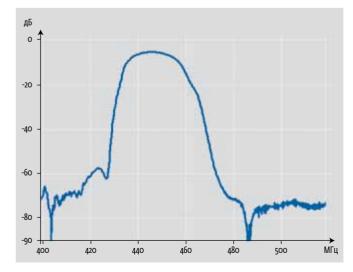


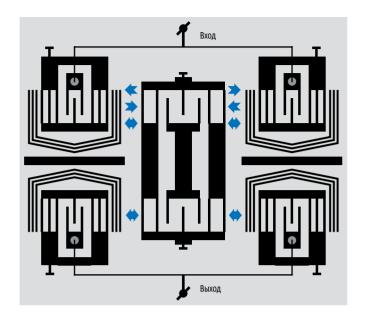
Рис. 2. Конструкция и типовая АЧХ высокоизбирательного АРК трансверсального типа

методы взвешивания ВШП, например, выборочное удаление электродов, емкостное взвешивание и др. Основные типы конструкций ВШП и их сравнительные характеристики приведены в табл.3.


МНОГОПОЛОСКОВЫЙ ОТВЕТВИТЕЛЬ


В технике ПАВ многополосковый ответвитель (МПО) применяется достаточно широко. Это связано, во-первых, с возможностью передачи энергии ПАВ из канала в канал, что позволяет использовать универсальность, которую дает аподизация двух преобразователей и сводит практически на нет искажения частотной характеристики, обусловленные объемными волнами и сигналом тройного прохождения. Во-вторых, применение МПО обеспечивает дополнительную фильтрацию. В-третьих, использование МПО

в качестве отражателя ПАВ позволяет уменьшить вносимые потери, обусловленные двунаправленностью излучения ВШП.


В составе трансверсальных фильтров обычно используется простейший вариант конструкции МПО, который представляет собой периодическую систему проводящих электродов, связывающих два параллельных акустических канала и обеспечивающих полную перекачку энергии из канала в канал (для 128°YX/l-среза ниобата лития оптимальное число полос - 104).

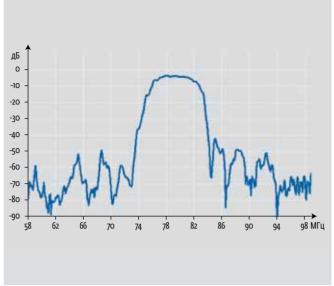

Для применения в составе устройств с малыми потерями используются два типа МПО: U-образный (для широкополосных устройств) и реверсивный (для узкополосных устройств) МПО. Известно, что в простом МПО на половинной длине переноса, N=1,16(ΔV/V), энергия

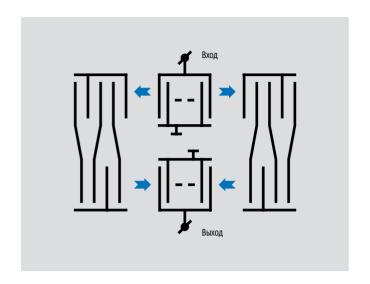
Рис.3. Конструкция и типовая АЧХ АРК на основе продольно-связанной резонаторной структуры (LCFR)

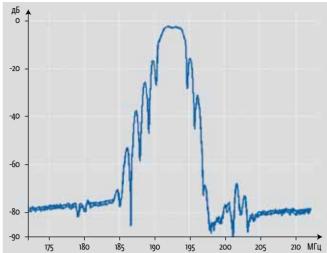
Рис.4. Конструкция и типовая АЧХ АРК на основе U-образного МПО (U-MSCF)

ПАВ одинаково распределяется между каналами, при этом фаза выходного сигнала в одном канале опережает фазу в другом канале на п/2. Если придать ему U-образную форму и разместить внутри симметричный однородный преобразователь со сдвигом от центра симметрии на 1/4 длины волны, то будет получено направленное излучение волны в одном из направлений

по оси X. В соответствии с принципом взаимности в противоположном направлении волна не отражается, если преобразователь согласован. Это свойство позволяет минимизировать сигнал тройного прохождения в устройствах на ПАВ. Реверсивный МПО используется в составе двухканальных конструкций АРК. Структура содержит три полоски на период, которые периодически

Самый крупный в мире экран на светодиодах


На гоночной трассе в г. Шарлотта (шт. Северная Каролина) компанией Panasonic установлен крупнейший в мире экран на светодиодах размером 61х24,4 м. Разрешение экрана – 720р. Для воспроизведения инфор-


мации о движении используется программа iRacing. На создание экрана ушло более четырех месяцев. Конструкция массой 332,5 т содержит 158 панелей и 9 млн. светодиодов. Предусмотрено воспроизведение изображе-

ния высокой четкости с построчной разверткой и разрешением 1280×720 точек.

World's largest LED HDTV screen unveiled by Panasonic at Charlotte Motor Speedway.

Laser Focus, May 28, 2011.

Рис.5. Конструкция и типовая АЧХ АРК на основе реверсивного МПО (RMSC)

связаны между каналами и некоторые из них заземлены, что обеспечивает передачу акустической энергии в нижний канал в противоположном направлении.

ОТРАЖАТЕЛЬНЫЕ РЕШЕТКИ

Применение отражательных решеток в основном ограничено конструкциями, работающими на основе переотражений. Они используются для уменьшения потерь, связанных с двунаправленностью излучения волны встречно-штыревым преобразователем. Структура содержит две полоски на период, что обеспечивает максимальный уровень переотражений. Для обеспечения синфазного приема акустического сигнала расстояние между отражателем и ВШП выбирается кратным половине длины волны. На сильных пьезоэлектриках (41°YX/l-срез ниобата лития) для полного отражения волны достаточно 30 пар электродов.

ОСНОВНЫЕ ТИПЫ КОНСТРУКЦИЙ АРК

Пространственное объединение рассмотренных выше элементов акустического тракта различными конструктивными способами позволило разработать широкий спектр АРК с шириной полосы пропускания от 0,05 до 30%. Основные конструкции АРК и их типовые характеристики приведены на рис. 2-7.

Для анализа всех частотно-избирательных элементов конструкции и АРК использовался модифицированный Р-матричный метод, основанный на теории связанных мод и обеспечивший высокую сходимость теоретических и

экспериментальных результатов за счет точного моделирования эффектов отражения и преобразования в электродных структурах.

Таким образом, разработанные физикотехнические принципы построения и математические модели пригодны для практической реализации широкого спектра АРК, таких как полосовые фильтры, линии задержки, режекторные фильтры, используемые в системах радиолокации, радиосвязи, радионавигации и телевидения.

ЛИТЕРАТУРА

Hartmann C.S. A fast accurate method for calculating the SAW and bulk wave radiation admittance of a SAW transducer, Proc. - IEEE Ultrason. Symp., 1988, p.39-46.

Синицына Т.В., Орлов М.М. Исследование влияния электродной структуры на параметры акустической волны в сильных пьезоэлектриках - Известия вузов. Сер. Материалы электронной техники, 2004, №1, c.67-69.

Синицына Т.В., Багдасарян А.С., Егоров Р.В. ПАВфильтры на основе продольно-связанных структур. -Электронная промышленность, 2004, с.14-19.

Багдасарян А.С., Синицына Т.В., Машинин О.В. ПАВфильтры с малыми потерями на основе U-образного ответвителя. - Электросвязь, 2004, №2, с.32-33.

Синицына Т.В., Багдасарян А.С., Кузнецов М.В. Резонаторные ПАВ-фильтры на основе реверсивного МПО. -Системы и средства связи, телевидения и радиовещания, 2003, №1/2, с.15-20.

Багдасарян А.С., Синицына Т.В. Селективные акустоэлектронные приборы на основе однонаправленных структур поверхностных акустических волн. - М.: 2004.