СЕКВОЙЯ: ИМПЕРИЯ НАНОСИТ ОТВЕТНЫЙ УДАР

ОПУБЛИКОВАНА 39-я РЕДАКЦИЯ ТОР500

18 июня на традиционной международной суперкомпьютерной конференции по ISC'12 в Гамбурге была представлена 39-я редакция списка наиболее производительных суперкомпьютеров TOP500 (www.top500.org). Как почти всегда, это событие отразило очередные перемены в мире сверхвысокопроизводительных вычислительных систем. Прежде всего, впервые с ноября 2009 года США вернули себе лидерство в рейтинге. Полгода назад на 17-й строчке ТОР500 появилась система BlueGene/Q производства компании IBM, установленная в Ливерморской национальной лаборатории Министерства энергетики США. Видимо, это был прототип монстра - за полгода систему кардинально модернизировали, увеличив число процессоров (16-ядерные Power BQC с тактовой частотой 1,6 ГГц) в 24 раза - так, что число ядер с 98304 выросло до 1572864. Обновленная система под именем Секвойя (Sequoia) продемонстрировала максимальную производительность на тестах Linpack в 16,32 PFlops (1 PFlops = 10¹⁵ операций с плавающей точкой в секунду), заняв первую строку TOP500. Аналогичная система BlueGene/Q с именем Mira появилась в Национальной лаборатории Аргонн. Максимальная производительность - 8,15 PFlops - вывела этот суперкомпьюетр на третью строку ТОР500.

Бывший лидер - K-computer от Fujitsu, возглавлявший ТОР500 в двух предыдущих списках, сместился на второе место. Вопрос - надолго ли? По заявлению президента Fujitsu Macaми

Ямамото, в планах компании - в ближайшее время вернуть утраченный приоритет. Еще один суперкомпьютер США в ТОР10 - модернизированная система Jaguar (производства компании Cray) Окриджской национальной лаборатории. За полгода максимальная производительность этой системы выросла с 1,759 до 1,941 PFlops, однако с третьей строки она сместилась на шестую.

Одна из особенностей новой редакции ТОР10 - возвращение в него европейских систем. Так, на четвертом месте - самый мощный в Европе суперкомпьютер SuperMUC (система iDataplex компании IBM), установленный в Исследовательском центре Лейбница в Германии. Другая установленная в Германии система JuQUEEN (BlueGene/Q) находится в Исследовательском центре в Юлихе и занимает в ТОР500 восьмое место. В Италии в академическом суперкомпьютерном центра CINECA установлена система Fermi (BlueGene/Q), расположившаяся на седьмой строке. Французский суперкомпьютер Curie thin nodes компании Bull supercomputer занимает девятую строку.

Россия представлена в ТОР500 пятью системами, как и в прошлом списке, - а ведь год назад их было 11. Лидером среди отечественных компьютеров выступает система "Ломоносов" российской компании T-Platforms. За полгода он был модернизирован, его максимальная производительность выросла до 0,9 PFlops, однако он опустился на 22 строку.

39-я редакция списка TOP500 наиболее высокопроизводительных суперкомпьютеров (www.top500.org)

Номер	Компьютер, процессор, тактовая частота, сеть (если стандартная), графический ускоритель (если есть)	Произво- дитель	Число процес- сорных ядер	Произво ность, Макси- мальная		Где установлен	Страна	Год
1	Sequoia BlueGene/Q, Power BQC 16 ядер 1,60 ГГц, Custom	IBM	1572864	16324751	20132659	DOE/NNSA/LLNL	США	2011
2	K computer , SPARC64 VIIIfx 2,0 ГГц, Tofu interconnect	Fujitsu	705024	10510000	11280384	RIKEN Advanced Institute for Computational Science (AICS)	Япония	2011
3	Mira BlueGene/Q, Power BQC 16 ядер, 1,60 ГГц, Custom	IBM	786432	8162376		DOE/SC/Argonne National Laboratory	США	2012
4	SuperMUC iDataPlex DX360M4, Xeon E5-2680 8 ядер, 2,70 ГГц, Infiniband FDR	IBM	147456	2897000	3185050	Leibniz Rechenzentrum	Германия	2012
5	Tianhe-1A NUDT YH MPP, Xeon X5670 6 ядер, 2,93 ГГц, NVIDIA 2050	NUDT	186368	2566000	4701000	National Supercomputing Center in Tianjin	КНР	2010
6	Jaguar Cray XK6, Opteron 6274 16 ядер, 2,200 ГГц, Cray Gemini interconnect, NVIDIA 2090	Cray Inc.	298592	1941000	2627609	DOE/SC/Oak Ridge National Laboratory	США	2009
7	Fermi BlueGene/Q, Power BQC 16 ядер, 1,60 ГГц, Custom	IBM	163840	1725492	2097152	CINECA	Италия	2012
8	JuQUEEN BlueGene/Q, Power BQC 16 ядер, 1,60 ГГц, Custom	IBM	131072	1380393	1677722	Forschungszentrum Juelich (FZJ)	Германия	2012
9	Curie thin nodes Bullx B510, Xeon E5-2680 8 ядер, 2,700 ГГц, Infiniband QDR	Bull SA	77184	1359000	1667174	CEA/TGCC-GENCI	France	2012
10	Nebulae Dawning TC3600 Blade System, Xeon X5650 6 ядер, 2,66 ГГц, Infiniband QDR, NVIDIA 2050	Dawning	120640	1271000	2984300	National Supercomputing Centre in Shenzhen (NSCS)	КНР	2010
22	Lomonosov T-Platforms T-Blade2/1.1, Xeon X5570/X5670/E5630 2,93/2,53 ΓΓμ, Infiniband QDR, NVIDIA 2070 GPU, PowerXCell 8i	T-Platforms	78660	901900	1700210	Московский государственный университет	Россия	2011
148	MVS-100K Cluster Platform 3000 BL460c/BL 2x220/SL390, Xeon E5450/5365/X5675 4 ядра, 3,000 ГГц, Infiniband DDR, NVIDIA 2090	Hewlett- Packard	13004	119930	227944	Межведомственный суперком- пьютерный центр РАН	Россия	2009
182	Cluster Platform 3000 BL 2x220, Xeon E5450 4 ядра, 3,000 ГГц, Infiniband QDR	Hewlett- Packard	10304	101213,2	123648	Курчатовский институт	Россия	2010
185	SKIF Aurora SKIF Aurora Platform - Intel Xeon X5680, Infiniband QDR	RSC SKIF	8832	100400	117000	Южноуральский государствен- ный университет	Россия	2011
390	Cluster Platform SL390s G7, Xeon X5650 6 ядер, 2,660 ГГц, Infiniband QDR, NVIDIA 2070	Hewlett- Packard	4320	69583,5	133814,4	Курчатовский институт	Россия	2012
500	Cluster Platform 3000 280c G7, Xeon X5672 4 ядра, 3,20 ГГц, Infiniband QDR	Hewlett- Packard	6064	60824,4	77619	IT Service Provider	США	2012

Значительно, более чем на 66%, выросла суммарная максимальная вычислительная мощность систем в ТОР500. Она достигла 123,4 PFflops по сравнению с 74,07 PFlops полгода назад. Цена входного билета в ТОР200 превысила 1 PFlops. А замыкающий ТОР500 суперкомпьютер (60,8 TFlops) соответствовал 332-му месту в прошлой редакции.

По-прежнему в ТОР500 лидируют два производителя суперкомпьютеров – IBM (213 систем, 42,6%) и Hewlett-Packard (HP) (138 компьютеров, 28,2%). Это чуть ниже, чем полгода назад. За ними с огромным отрывом следуют Cray (5,4%), Appro (3,6%), SGI и Bull (по 3,2%). С точки зрения установленной вычислительной мощности (по максимальной производительности) доминирование IBM еще сильнее – 47,5% (58,6 PFlops) против 10% (12,3 PFlops) у HP. Напомним, полгода назад доля IBM по установленной мощности составляла "лишь" 27,3%. За лидерами следуют компании Fujitsu (9,9%) и Cray (8,9%). В 372 суперкомпьютерах используются процессоры Intel, в 63 системах – AMD (семейство Opteron), в 58 системах – процессоры IBM. По числу установленных суперкомпьютеров безраздельно лидируют США – 252 системы. Далее следует КНР (68 систем), Япония (35), Великобритания (25), Франция (22), Германия (20) и Канада (10), Италия (8), Австралия (6), Россия, Польша и Индия (по 5).

И.Шахнович, по материалам www.top500.org