ДРАЙВЕРЫ СВЕТОДИОДОВ КОМПАНИИ МАХІМ

НОВЫЕ РЕШЕНИЯ

Павел Чуприна chuprina pavel@mail.ru

Драйверы светодиодов, предлагаемые компанией Maxim. представляют собой интегральные схемы для управления белыми и цветными светодиодами. Эти энергосберегающие, экономически эффективные решения позволяют создавать приложения нового поколения для проекторов, транспортных средств, подсветки ЖК-экранов и осветительных приборов общего назначения. Сегодня номенклатура драйверов компании Махіт включает в себя 28 видов продукции – линейные и импульсные преобразователи (понижающие (buck), повышающие (boost) и SEPIC.

райверы обеспечивают прохождение через светодиод стабилизированного номинального тока. Для нормальной и долговечной работы драйверов ток, проходящий через них, должен

быть постоянным и не зависеть от колебаний питающего напряжения. В зависимости от типа драйверы рассчитаны на напряжение 10, 12, 24 В и постоянный ток 350, 700 мА и 1 А. Они либо встраиваются в светодиодную лампу, либо располагаются отдельно, чтобы облегчить установку или замену любого другого осветительного оборудования [1].

Драйверы светодиодов большой мощности делятся на две группы: для светодиодов высокой яркости (High Brightness (HB) LED Drivers) и белых светодиодов (White LED Drivers) характеризуются различными параметрами (табл.1 и 2, рис.1).

ДРАЙВЕРЫ ДЛЯ СВЕТОДИОДОВ ВЫСОКОЙ ЯРКОСТИ **MAX16838** - двухканальный драйвер, имеет повышающий SEPIC-стабилизатор (SEPIC - Single-Ended Primary Inductance Converter), два стока тока и полный набор силовых полевых транзисторов.

Рис.1. Области применения драйверов светодиодов высокой яркости

Таблица 1. Характеристики драйверов светодиодов высокой яркости [2]

Марка	Тип преобразователя	U _{BX} , B	I _д , А/ канал	F, кГц	ШИМ, кГц	ШИМ- отношение	Корпус
MAX16800	Линейный	6,5-40	0,35/1	-	1	1,0:30	TQFN-EP/16
MAX16801	Boost/flyback/SEPIC	22-400	3,0/1	262	2	1,0:3000	μMAX/8
MAX16802	Boost/buck/flyback/SEPIC	10,8-24	3,0/1	262	2	1,0:3000	μMAX/8
MAX16803	Линейный	6,5-40	0,35/1	_	2	1,0:200	TQFN-EP/16
MAX16807	Boost/SEPIC+линейный	8,0-24	0,055/8	20-1000	30	1,0:5000	TSSOP-EP/28
MAX16809	Boost/SEPIC+линейный	8,0-24	0,055/8	20-1000	30	1,0:5000	TQFN-EP/38
MAX16812	Boost/buck/buck-Boost	5,5-76	1,0/1	125-500	1	1,0:100	TQFN-EP/28
MAX16814	Boost/SEPIC+линейный	4,75-40	0,15/4	200–2000	20	1,0:5000	TQFN/ TSSOP-EP/20
MAX16815	Линейный	6,5-40	0,1/1	_	1	1,0:30	TDFN/6, SO-EP/8
MAX16816	Boost/buck/buck-вооst	5,9-76	10,0/1	100-600	1	1,0:1000	TQFN-EP/32
MAX16818	Boost/buck/SEPIC	7,0-28	30,0/1	125-1500	30	1,0:5000	TQFN-EP/28
MAX16819	Buck	4,5-28	3,0/1	20-2000	20	1,0:5000	TDFN-EP/6
MAX16820	Buck	4,5-28	3,0/1	20-2000	20	1,0:5000	TDFN-EP/6
MAX16821	Boost/buck/SEPIC	4,75–28	30,0/1	125–1500	10	1,0:1000	TQFN-EP/28
MAX16822	Buck	6,5-65	0,35/1	20-2000	20	1,0:5000	SO/8
MAX16823	Линейный	5,5-40	0,1/3	_	3	1,0:200	TQFN-EP/16
MAX16824	Линейный	6,5–28	0,15/3	_	3	1,0:200	TSSOP-EP/16
MAX16825	Линейный	6,5-28	0,15/3	_	3	1,0:200	TSSOP-EP/16
MAX16826	Boost/SEPIC+линейный	4,75–24	3,0/4	100-1000	2	1,0:5000	TQFN-EP/32
MAX16828	Линейный	6,5-40	0,1/1	_	1	1,0:30	TDFN/6, SO-EP/8
MAX16831	Boost/buck/buck-вооst	5,9-76	10,0/1	125-600	1	1,0:1000	TQFN-EP/32
MAX16832	Buck	6,5-65	0,7/1	20-2000	20	1,0:5000	SO-EP/8
MAX16834	Boost/buck/buck-Boost	4,75-28	10,0/1	100-1000	20	1,0:3000	TQFN/ TSSOP-EP/20
MAX16835	Линейный	6,5-40	0,1/1		1	1,0:30	TQFN-EP/16
MAX16836	Линейный	6,5-40	0,35/1	_	1	1,0:30	TQFN-EP/16
MAX16839	Линейный	5,0-40	0,1/1	_	3	1,0:200	TDFN/6, SO-EP/8

Таблица 2. Характеристики драйверов белых светодиодов [3]

Марка	Тип преобразования	Кол-во свето- диодов	Конфигурация	Интерфейс управления
MAX8930	ГП3/линейный	12	Параллельная	I ² C
MAX8831	Индукторный	45	Параллельно-последовательная	I ² C/цифровой
MAX8879	Генератор подкачки заряда (ГПЗ)	11	Параллельная	I ² C/цифровой
MAX17061	Индукторный	80	Параллельно-последовательная	I ² C/ШИМ/цифровой
MAX8822	ГП3	4	Параллельная	Цифровой
MAX8790A	Индукторный	72	Параллельно-последовательная	Аналоговый/цифровой/ШИМ
MAX8821	ГП3	6	Параллельная	I ² C/цифровой
MAX8901	Индукторный	6	Последовательная	ШИМ/импульсный
MAX8648	гпз	6	Параллельная	Импульсный
MAX8830	Индукторный	5	Параллельная	I ² C
MAX8607	Индукторный/ линейный	1	Параллельная	Цифровой
MAX8645	ГП3	6	Параллельная	ШИМ/цифровой/импульсный
MAX1707	ГП3	11	Последовательная	I ² C/цифровой
MAX8630	ГП3	5	Параллельная	ШИМ/импульсный
MAX1577	ГП3	40	Параллельная	Цифровой
MAX8595	Индукторный	9	Последовательная	ШИМ/аналоговый
MAX1579	Индукторный	8	Последовательная	ШИМ/аналоговый
MAX1576	ГП3	8	Параллельная	ШИМ/импульсный/аналоговый
MAX1575	ГП3	6	Параллельная	Импульсный
MAX1583	ГП3	5	Последовательная	Аналоговый/цифровой
MAX1561	Индукторный	6	Последовательная	ШИМ/аналоговый
MAX1573	ГП3	4	Параллельная	ШИМ/аналоговый/цифровой
MAX1582	Индукторный	7	Последовательная	ШИМ/аналоговый
MAX1985	Индукторный	6	Параллельная	ШИМ/аналоговый/цифровой
MAX1984	Индукторный	8	Параллельная	ШИМ/аналоговый/цифровой
MAX1986	Индукторный	4	Параллельная	ШИМ/аналоговый/цифровой
MAX1570	ГП3	5	Параллельная	ШИМ/аналоговый
MAX1912	ГП3	6	Параллельная	Аналоговый
MAX1916	Линейный	3	Параллельная	Аналоговый
MAX1848	Индукторный	6	Последовательная	Аналоговый
MAX1698	Индукторный	50	Последовательно- параллельная	Аналоговый
	1			·

Падение напряже- ния, мВ	Р _{вых} , Вт	I _{макс} , мА	U _{вых} , В	f _{перакл.} , кГц	Корпус
62	1,1	25	5	4000	WLP/49
150	5	25	28	2000	WLP/16
40	2,5	100	5	1000	TQFN24
_	10	30	40	1000	TQFN28
60	0,4	24	5,5	1000	TQFN16
-	10	27	100	1000	TQFN20
72	0,6	25	5,5	1000	TQFN28
-	0,6	25	24	750	TDFN-EP/9
-	6	24	5	1000	TQFN/16
75	1,5	200	5,3	1000	WLP/16
-	6	1500	5,5	1000	TDFN-EP/14
40	2,8	200	5,5	1000	TQFN/28
40	2,5	100	5	1000	TQFN/24
_	0,5	25	_	1000	TDFN-EP/8
_	5	1200	5,1	1000	TDFN-EP/8
_	1	25	32	1000	TDFN-EP/8
-	0,9	25	32	1000	TQFN/24
-	2	400	5	1000	TQFN/24
_	0,75	30	5	1000	TQFN/16
_	6	300	24	1000	TDFN-EP/10
-	0,9	20	26	1000	TDFN-EP/8
-	0,5	28	5	1000	TQFN/16
-	0,6	20	26	1000	TDFN/12
-	0,6	20	26	1000	TQFN/12
-	0,8	25	5	1000	TQFN/20
_	0,4	25	5	1000	TQFN/16
-	0,7	30	5	1000	TQFN/16
-	0,5	120	5	750	μMAX/10
-	1	60	5	-	TSOT/6
-	0,8	60	12	1200	TDFN-EP/8
_	5	350	60	_	μMAX/10

Оптимизация эффективности преобразования достигается путем адаптации выходного напряжения под энергопотребление светодиодов. Частота пульсаций преобразователя может быть настроена в пределах от 200 кГц до 2 МГц или синхронизирована с внешним тактирующим генератором для улучшения электромагнитной совместимости. Помимо этого, драйвер МАХ16838 оснащен всем необходимым для предотвращения сбоя системы, включая блок обнаружения перегрева, перенапряжения и выхода светодиодов из строя. Например, если на одном из каналов произошел разрыв или короткое замыкание, драйвер автоматически выключает поврежденный канал, оставляя в исходном состоянии другой. Максимальная сила тока в одном канале составляет 150 мА, а при соединении двух каналов в один сила тока может быть увеличена до 300 мА.

Драйвер сконструирован для эксплуатации в жестких условиях (диапазон рабочих температур от -40 до 125°С). Диапазон допустимых входных напряжений – от 4,75 до 40 В. Выпускается в термически укрепленных 32-выводных корпусах типа TQFN и TSSOP размером 4×4 мм. Предназначен для использования в автомобильной электронике.

MAX16816 – высоковольтный, программируемый драйвер. Входное напряжение лежит в области от 5,4 до 76 В. Возможно кратковременное функционирование при 80 В. Драйвер может работать как понижающий, повышающий или понижающий/повышающий регулятор тока. Диапазон рабочих температур от -40 до 125°С. Выпускается в 32-выводном корпусе типа TQFN.

Преимущественно применяется в автоэлектронике, так как отвечает современным требованиям, предъявляемым к последним разработкам в области систем освещения автомобилей (адаптивный передний свет, противотуманные фары и освещение в салоне автомобиля).

МАХ16824 и МАХ16825 – трехканальные драйверы с диапазоном входного напряжения от 6,5 до 28 В (рис.2, 3). Особенностью ИС является наличие трех выходов постоянного тока с открытым стоком (максимальное выходное напряжением 36 В и ток 150 мА), что позволяет подключить три отдельные линейки последовательно соединенных светодиодов. Ток для каждой линейки можно задавать независимо. В схеме МАХ16824 такая возможность поддерживается благодаря трем ШИМ, которые управляют затуханием светодиодов. В схеме МАХ16825 для регулирования выходных токов служит прозрачный трехразрядный регистр-защелка,



Рис.2. Типовая схема включения МАХ16824

трехразрядный регистр сдвига и четырехпроводной последовательный интерфейс с пропускной способностью 2 Мбит/с. Последовательный интерфейс позволяет управлять выходами всех каналов при помощи микроконтроллера, а также обеспечивает совместную работу нескольких микросхем.

В схемах МАХ16824 и МАХ16825 имеется пассивный элемент с малым падением напряжения, это исключает необходимость применения внешнего мощного транзистора. Точность управления током каждого из трех пассивных элементов ±5%, что обеспечивает отличное равномерное свечение светодиодов. При использовании этих драйверов уменьшаются габариты, сложность и общая стоимость конечного изделия.

МАХ16824 и МАХ16825 включают в себя также стабилизированный источник напряжения 5 В с выходным током до 4 мА и схему защиты от перегрева и перенапряжения. Обе микросхемы выпускаются в 16-выводном TSSOPкорпусе с теплоотводящей поверхностью, обеспечивающей улучшенное рассеивание тепла. Размер корпуса - 4×4 мм. Диапазон рабочих температур от -40 до 85°C. Драйверы широко применяются в промышленном, архитектурном и декоративном освещении, системах внутреннего освещения автомобилей, в подсветке ЖК-дисплеев.

МАХ16839 - недорогой высоковольтный драйвер, обеспечивающий ток до 100 мА. ИС позволяет минимизировать количество внешних компонентов за счет высокой интеграции и наличия схемы обнаружения неисправности. Кроме того, она обеспечивает функциональную совместимость множества драйверов в устройствах с параллельно и последовательно соединенными светодиодами. При широком диапазоне входного напряжения (от 5 до 40 B) MAX16839

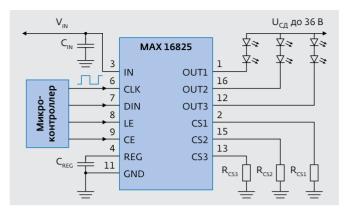


Рис.3. Типовая схема включения МАХ16825

позволяет получить оптимальное по стоимости конечное изделие.

За счет встроенного проходного транзистора и широкого диапазона входного напряжения MAX16839 поддерживает постоянный ток светодиодов при изменении напряжения аккумулятора. ИС может выдерживать напряжение в нагрузке до 45 В, величина тока в ней при этом остается постоянной. Для обеспечения высокого качества свечения светодиодов драйвер имеет схему защиты от резких перепадов нагрузки. MAX16839 имеет детектор обнаружения неисправности. Эта функция очень важна для приложений с множеством драйверов, при отсутствии этой функции при выходе из строя одного светодиода выключаются все.

MAX16839 выпускается в термически защищенном 8-выводном корпусе типа SO и 6-выводном типа TDFN и работает в расширенном температурном диапазоне от -40 до 125°C. Применяется в автомобильной электронике (задние, боковые фары и сигналы поворота автомобилей).

MAX16818 - мощный ШИМ-драйвер, требует минимального числа внешних компонентов. Благодаря универсальной структуре драйвера на его основе можно строить понижающие и повышающие синхронные и асинхронные преобразователи. Скорость изменения тока - до 20 А/мкс, частота регулирования - 30 кГц.

Управление светодиодами осуществляется по среднему значению тока, что позволяет оптимизировать работу MOSFET-ключей согласно их характеристикам и снизить требования к системам внешнего охлаждения, когда ток нагрузки достигает 30 А. Дифференциальный датчик обеспечивает прецизионное управление током светодиода. Внутренний стабилизатор гарантирует работу в широком диапазоне входного напряжения 4,75-5,5 В или 7-28 В, а частота преобразования

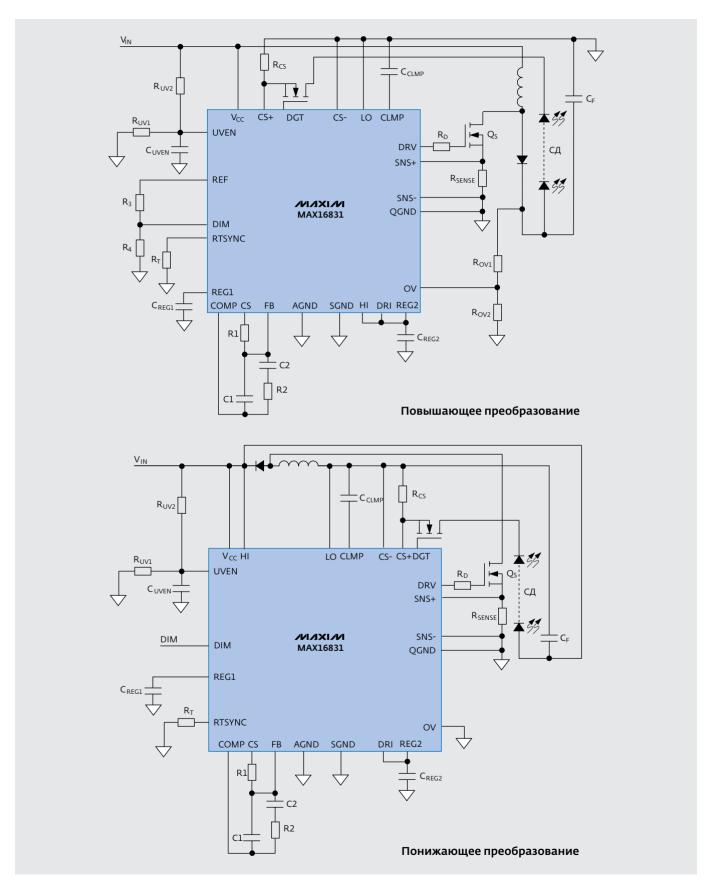


Рис.4. Типовая схема включения МАХ16831

1,5 МГц позволяет использовать малогабаритные емкости и индуктивности.

Особенностью МАХ16818 является наличие противофазного основному выхода драйвера для управления вторым ключом, что дает возможность уменьшить емкость конденсаторов входного и выходного фильтров или снизить пульсации тока. Основные характеристики: программируемая частота преобразования или внешняя синхронизация с частотой 125 кГц - 1,5 МГц, сдвиг фазы выходных сигналов на 180°, встроенные ключевые драйверы на 4 А, наличие защиты от перегрузки по току и от перегрева. Температурный диапазон от -40 до 125°C. Выпускается в корпусе

Области применения: портативные и малогабаритные прожекторы, ЖК-телевизоры и подсветка дисплеев, передняя и задняя подсветка телевизоров, автомобильные системы, внутрисалонное и аварийное освещение.

МАХ16831 - мощный драйвер, имеет функцию аналогового или ШИМ-регулирования яркости. Встроенные токочувствительный усилитель и MOSFET-драйвер для управления яркостью обеспечивают высокую надежность осветительных систем.

Основные характеристики драйвера MAX16831:

- разброс тока через светодиод 5%;
- возможность регулировки яркости внешним ШИМ-сигналом;
- программируемая частота преобразования (125-600 кГц) и возможность внешней синхро-
- наличие защиты от перенапряжения на выходе, замыкания светодиода и перегрева;
- малый порог контроля тока через светодиод (107 mB);

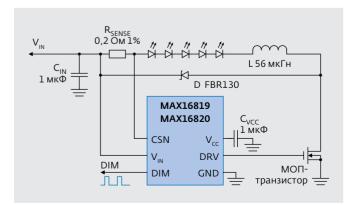


Рис.5. Типовая схема включения МАХ16819 и МАХ16820

• потребляемый ток в режиме отключения менее 45 мкА.

MAX16831 (рис.4) работает в диапазоне рабочих температур от -40 до 125°C от источника питания напряжением от 5,4 до 76 В, т.е. приспособлен к условиям, возникающим при запуске двигателя автомобиля на холоде или при резком понижении нагрузки (броски напряжения до 80 В). Он удовлетворяет современным требованиям по конструкции осветительных систем автомобиля и идеально подходит для фар ближнего и дальнего света, фар для езды в светлое время суток и противотуманных фар. Микросхема выпускается в 32-выводном TQFN-корпусе размером 5×5 мм без содержания свинца с выведенной наружу контактной площадкой.

MAX16819 и MAX16820 - импульсные понижающие драйверы (рис.5, 6). Имеют широкий диапазон входного напряжения - от 4,5 до 28 В. Для питания внутренних схем используется встроенный стабилизатор напряжения 5 В, который выдает в нагрузку ток до 10 мА. Между внешним выходом стабилизатора и общим проводом включается шунтирующий конденсатор номиналом 1 мкФ.

Включением светодиодов управляет внешний п-канальный МОП-транзистор. Он обеспечивает выходную мощность от 1 до 25 Вт, эффективность до 94% и управляет шестью белыми светодиодами, соединенными параллельно.

Токозадающий резистор R_{SENSE} определяет величину выходного тока с точностью до ±1%, а наличие входа DIM, на который может быть

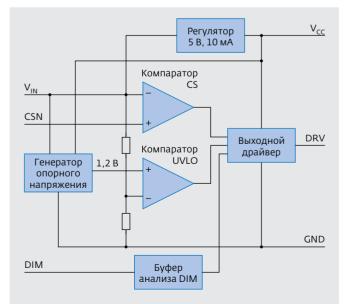


Рис.6. Структурная схема МАХ16819

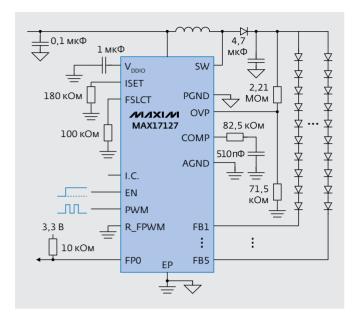


Рис.7. Типовая схема включения МАХ17127

подан сигнал с широтно-импульсной модуляцией, позволяет обеспечить диммирование (плавное изменение) яркости светодиодов в диапазоне 5000:1.

В отличие от большинства понижающих преобразователей общего назначения, использующихся для питания светодиодов высокой яркости, в МАХ16819 и МАХ16820 применен гистерезисный режим управления. За счет этого драйверы обеспечивают широкий диапазон регулировки. Кроме того, гистерезисный режим управления не требует коррекции в цепи обратной связи.

Высокочувствительный датчик тока и встроенная схема стабилизации обеспечивают стабильность выходного тока не хуже ±5% при минимальном количестве внешних элементов.

Микросхемы МАХ16819 и МАХ16820 работают в диапазоне температур от -40 до 125°C и выпускаются в миниатюрных корпусах типа TDFN с шестью выводами. Они обеспечивают эффективное по стоимости решение для систем внутреннего и наружного автомобильного освещения, архитектурной подсветки, светодиодных светильников и ламп и других приложений, использующих сверхъяркие светодиоды.

ДРАЙВЕРЫ ДЛЯ БЕЛЫХ СВЕТОДИОДОВ

МАХ8790 - высокоэффективный драйвер, разработан для больших ЖК-панелей, в которых светодиодные матрицы используются в качестве источника света. В МАХ8790 для управления шестью параллельными линиями светодиодов, соединенных последовательно, используется контроллер с пошаговым повышением. Точность регулировки яркости между линиями составляет ±1,5%, что гарантирует равномерное свечение всех светодиодов. Драйвер имеет широкий диапазон входных напряжений - от 4,5 до 26 В и обеспечивает фиксированный (20 мА) или регулируемый в диапазоне от 15 до 25 мА ток светодиода. Частота переключения выбирается - 500, 750 кГц или 1 МГц.

Внешний МОП-транзистор повышает эффективность, позволяет увеличить выходную мощность и максимальное рабочее напряжение, а также последовательно подключить большое количество светодиодов, найти компромисс между размером внешних компонентов и эффективностью работы. Совместное применение трех режимов управления (аналогового, цифрового, ШИМ) позволяет достичь эффективности регулировки в широких пределах 100:1. В драйвере имеются схемы защиты от перенапряжения и перегрева. Он предназначен для работы в температурном диапазоне от -40 до 85°C и выпускается в низкопрофильном, термозащищенном корпусе типа TQFN размером 4×4мм.

MAX17127 - повышающий преобразователь (рис.7). Схема драйвера включает интегрированный мощный высоковольтный (48 В) полевой транзистор, который позволяет управлять 13-ю светодиодами. Частота повышающего преобразователя может быть запрограммирована в диапазоне от 250 кГц до 1 МГц.

Широкий диапазон входного напряжения - от 5 до 26 В делает МАХ17127 перспективным для применения в нетбуках с питанием от двух- или трехэлементных литиевых аккумуляторов, а также в ноутбуках с аккумуляторами большой емкости. Ток каждой линии последовательно соединенных диодов может быть запрограммирован в диапазоне от 10 до 30 мА посредством внешнего резистора, позволяющего регулировать уровень яркости. Точность задания тока между линиями составляет ±2%. Драйвер работает в режиме непосредственного управления яркостью с частотой регулировки от 100 Гц до 25 кГц. Широкий диапазон регулирования яркости устраняет низкочастотный шум, который обычно присутствует в устройствах управления белыми светодиодами высокой яркости.

MAX17127 имеет защиту от сбоев, включая перегрузку по току, перегрев, обрыв в цепи нагрузки и короткое замыкание в линии светодиодов. Выпускается в 20-выводном корпусе типа TQFN

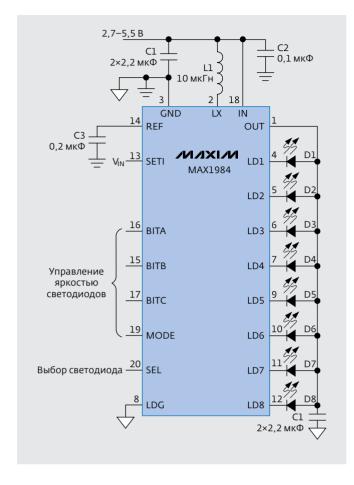


Рис.8. Типовая схема включения МАХ1984

размером 4×4 мм и работает в широком температурном диапазоне от -40 до 85°C.

МАХ8822 - содержит высокоэффективную схему накачки заряда и два независимых LDO-стабилизатора напряжения с выходным током 200 мА (LDO-стабилизатор - это стабилизатор со сверхнизким падением напряжения). Он обеспечивает управление четырьмя белыми светодиодами, причем для каждого из них используется независимая схема переключения. Диапазон индивидуально регулируемых выходных токов составляет 0,1-24 мА, точность регулировки токов - не более 1%, ток собственного потребления - 65 мкА.

LDO-стабилизаторы обеспечивают низкий уровень шума (45 мкВ) и высокий коэффициент подавления помех (60 дБ), поэтому драйверы MAX8822 рекомендуется применять в изделиях с высокой чувствительностью, например, в ЖК-панелях, фотоаппараторах, RF-устройствах. Выпускается в компактном (3×3×0,8 мм) корпусе типа TQFN.

MAX8645 - малогабаритный драйвер. Наличие генераторов подкачки заряда позволяет

уменьшить общие габариты на 40% за счет интеграции в одном корпусе драйверов подсветки, драйверов вспышки камеры и источника питания.

Генераторы подкачки заряда МАХ8645 позволяют работать с восемью светодиодами, равномерно выдавая на них постоянный ток. В системах вспышки (Flash) светодиоды управляются независимо, на них подается ток до 200 мА на каждый светодиод. Два встроенных линейных LDO-стабилизатора обеспечивают питание для функций фотокамеры. Особенностью этих стабилизаторов является низкий коэффициент шума (40 мкВ), что позволяет добиться стабильного питания с низкими пульсациями и очень важно для получения изображения с высоким разрешением в современных телефонах и телефонах следующего поколения.

МАХ8645 выпускается в 28-выводном корпусе типа TQFN 4×4 мм (максимальная высота 0,8 мм) без содержания свинца. Эти миниатюрные драйверы рекомендуется применять в раскладных, раздвижных сотовых телефонах и смартфонах с ЖК-экранами, а также в фотоаппаратах, встроенных в крышки сотовых телефонов.

MAX1984, MAX1985, MAX1986 – драйверы с индивидуальными стабилизаторами. Повышающий преобразователь имеет КПД>95%, вырабатывает уровни напряжения, необходимые для обеспечения стабильного тока через диоды. Это позволяет увеличить КПД драйверов до 90%.

МАХ1984, МАХ1985, МАХ1986 управляют работой 8, 6 и 4 светодиодов, соответственно (рис.8). Все драйверы имеют вывод выбора светодиода (SEL), который позволяет выбрать режим свечения одного из двух или всех светодиодов. Индивидуальные стабилизаторы тока поддерживают стабильный ток через светодиоды, поэтому включение/выключение одних светодиодов не влияет на яркость свечения остальных. Драйверы выпускаются в тонких QFN-корпусах размером 4×4 мм.

По материалам сайта http://www.maximintegrated.com

ЛИТЕРАТУРА

- 1. **Гольцова М.** Драйверы светодиодов: от мобильных телефонов до уличных светильников. Электроника: HTБ, 2011, №8, с.40–50.
- 2. **Петропавловский Ю.** Современные драйверы светодиодов высокой яркости фирмы Maxim. Полупроводниковая светотехника, 2010, №1, с.26–31.
- 3. **Петропавловский Ю.** Современные драйверы светодиодов подсветки ЖК-дислеев фирмы Maxim. Современная электроника, 2010, №7, с.18–27.