ПОДСТРОЕЧНЫЕ ПАССИВНЫЕ КОМПОНЕНТЫ ВЧ- И СВЧ-ДИАПАЗОНА

KOMПАНИИ SPRAGUE GOODMAN ELECTRONICS

Д.Дитлиа, В.Горбачев, С.Хорев, В.Кувшинов

Компания Sprague Goodman Electronics – один из признанных мировых лидеров в разработке и производстве пассивных радиокомпонентов. Среди них – переменные и подстроечные конденсаторы, варакторные диоды, а также настроечные компоненты и индуктивности для применения в ядерных и магнито-резонансных исследованиях, в высокочастотных, военных и микроволновых областях применения. Компания была основана в 1972 году. Некоторое время назад компанию возглавил Дэвид Дитлиа (David Ditlya), один из ведущих в мире специалистов по немагнитным конденсаторам. Поэтому значительное место в номенклатуре заняли немагнитные модификации типовых изделий. В частности, можно отметить немагнитные подстроечные конденсаторы, конструкция которых защищена патентами США. Компания Sprague Goodman Electronics не только предлагает широкую номенклатуру типовых переменных и подстроечных конденсаторов, но также разрабатывает и производит изделия по специальным требованиям конкретных заказчиков.

ПОДСТРОЕЧНЫЕ КОНДЕНСАТОРЫ

Прецизионные подстроечные конденсаторы (триммеры) серии PistonCap защищены патентом США (US Patent № 3840786). Отличительная особенность этой серии – простой, но очень надежный механизм перестройки емкости, обеспечивающий плавный и равномерный крутящий момент при повороте регулирующего винта. Это обусловлено особенностью резьбовой втулки специальной формы, которая обеспечивает равномерное давление в зубьях резьбы (т.е. заменяет прижимную пружину), чтобы сделать зависимость сдвига от крутящего момента равномерной во всем диапазоне перемещений элемента подстройки конденсатора.

Рис.1. Прецизионные подстроечные конденсаторы серии PistonCap: форм-фактор C (слева) и форм-фактор P (справа)

ТЕМА ГОДА: СВЧ

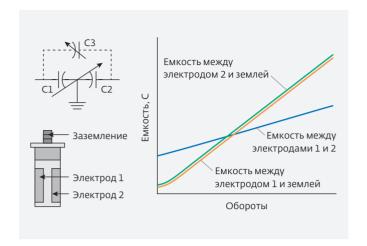


Рис.2. Миниатюрные подстроечные конденсаторы серии PistonCap с раздельным статором

Существует несколько модификаций механизма поворота: с выступающим торцом (формфактор Р) и с закрытым торцом (форм-фактора С) (рис.1). Кроме того, форм-факторы R, L, N, V, W отличаются способом монтажа и типом выводов. Серия PistonCap разработана согласно требованиям стандарта MIL-C-14409D (стили РС35, РС37-РС41, РС43, РС48, РС50 и РС52). В зависимости от назначения и области использования, в триммерах серии PistonCap применяются три диэлектрика: обычное стекло с диэлектрической проницаемостью 6,7 и тангенсом угла диэлектрических потерь (коэффициент рассеивания) 0,0012; динамическое стекло (Hi-Range Glass Dielectric) со значениями тех же характеристик 8,5 и 0,008; кварц с показателями 3,7 и 0,0001.

В серию PistonCap входят несколько моделей подстроечных конденсаторов с раздельным ста-

тором JFD-SP86GY, JFD-SP87GY и JFD-SP88GY (рис.2, табл.1). При перемещении подвижного элемента емкости составных конденсаторов меняются синхронно, что позволяет использовать эти триммеры в двухтактных схемах (усилители, генераторы и др.). Следует учитывать, что при этом меняется взаимная межконденсаторная емкость (СЗ на рис.2), которая специально показана в условном графическом обозначении, применяемом для триммеров этой модификации на электрических схемах.

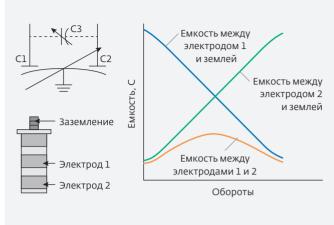


Рис.3. Дифференциальные подстроечные конденсаторы серии PistonCap

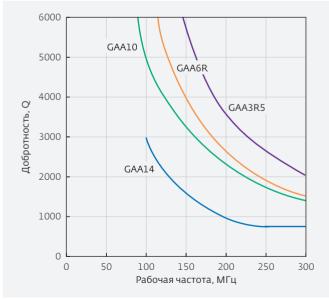
Еще одной модификацией в серии PistonCap являются дифференциальные подстроечные конденсаторы (рис.3, табл.2). Их особенность - емкости составных конденсаторов меняются противофазно, т.е. когда емкость одного конденсатора увеличивается, второго - снижается. Эта особенность полезна при настройке разнообразных дифференциальных устройств и цепей, когда при регулировке важно одновременно увеличивать емкость в одном каскаде вместе с уменьшением емкости в другом.

Многооборотные подстроечные конденсаторы с воздушным диэлектриком серии AirTrim (рис.4) предназначены для ВЧ- и СВЧ-устройств (усилители, генераторы, фильтры) радарных систем, систем мобильной связи, оборудования кабельного телевидения и других высокочастотных систем. Эта серия разработана в соответствии

Таблица 1. Характеристики конденсаторов PistonCap с раздельным статором

	Диапаз	он измен	Длина корпуса			
Модель		тина/ нт	Пластина/ пластина		без монтажных выводов и настроечной	
	Мин.	Макс.	Мин.	Макс.	головки, мм	
JFD-SP86GY	0,8	4,2	0,8	2,0	13,89	
JFD-SP87GY	0,8	9,0	1,5	4,5	25,40	
JFD-SP88GY	1,0	14,0	2,0	7,0	40,87	

Таблица 2. Характеристики дифференциальных миниатюрных конденсаторов


Модель	Диапазон измене- ния емкости, пФ		Средняя межэлек-	Расстояние между элек-	Длина кор-	Диаметр
	Мин.	Макс.	тродная емкость, пФ	тродами, мм	пуса, мм	выводов, мм
JFD-DC411Y Электрод 1 Электрод 2	0,7 2,0	3,0 3,0	2,3	2,39	7,92	0,41
JFD-DC413Y Электрод 1 Электрод 2	1,0 3,0	8,0 8,0	5,0	5,56	13,89	0,51
JFD-DC414Y Электрод 1 Электрод 2	1,0 3,5	12,0 12,0	6,8	7,92	19,05	0,64
JFD-DC416Y Электрод 1 Электрод 2	1,5 4,0	16,0 11,0	9,2	10,31	23,80	0,64
JFD-DC419Y Электрод 1 Электрод 2	2,0 6,0	26,0 28,0	15,2	16,66	36,50	0,64

с требованиями стандарта MIL-C-14409D, поэтому она пригодна для применения в военной и аэрокосмической областях. Подстроечные конденсаторы AirTrim отличаются высокой добротностью в рабочем диапазоне частот (рис.5). Интересна зависимость емкости конденсаторов AirTrim от числа оборотов подвижного элемента (рис.6). В серию AirTrim входит несколько типов конденсаторов для различных диапазонов емкости. Так, конденсаторы GAA3хххх предназначены для изменения емкости в диапазоне 0,35-3,5 пФ; GAA6хххх в диапазоне 0,6-6,0 пФ; GAA1хххх в диапазонах 1,0-10,0; 1,0-14,0

Рис.4. Многооборотные подстроечные конденсаторы с воздушным диэлектриком серии AirTrim

и 2,0-16,0 пФ. Стандартный диапазон рабочих температур: от -65 до 125°С. Рабочее напряжение составляет 250 В, испытательное - 500 В. Конденсаторы AirTrim допускают монтаж пайкой при 300°С.

Рис.5. Зависимость добротности от частоты для некоторых моделей многооборотных подстроечных конденсаторов AirTrim

ТЕМА ГОДА: СВЧ

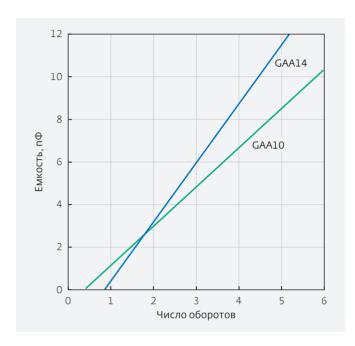


Рис. 6. Зависимость емкости многооборотных конденсаторов AirTrim от числа оборотов

В многооборотных подстроечных конденсаторах с диэлектриком из фторопластов (PTFE, Polytetrafluoroethylene - политетрафторэтилен, тефлон) выдающиеся электрические свойства фторопласта удачно соединились с достоинствами нержавеющих материалов и антикоррозийных покрытий (рис.7). Подобное сочетание позволило добиться, помимо высокой антикоррозийной стойкости, хороших электрических параметров: добротности (рис.8), сопротивления, электрической прочности диэлектрика.

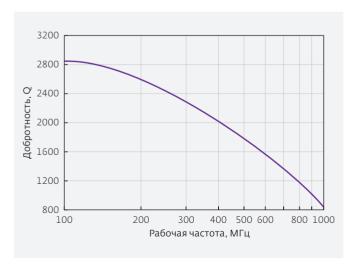


Рис. 8. Зависимость добротности от рабочей частоты конденсаторов с фторопластовым диэлектриком

Рис.7. Многооборотные триммеры с фторопластовым диэлектриком

Минимальная добротность на частоте 1 МГц - не менее 2000. Компания выпускает конденсаторы на основе фторопласта с диапазоном изменения емкости 0,25-1,5 пФ. При температуре 25°C рабочее напряжение составляет от 1250 до 1700 В (в зависимости от модели), напряжение электрической прочности диэлектрика - от 2500 до 3400 В. Диапазон рабочих температур: от -55 до 125°C.

Подстроечные конденсаторы с сапфировым диэлектриком (рис.9) разработаны в соответствии с требованиями стандарта MIL-C-14409D. Благодаря сапфиру, эти конденсаторы отличаются исключительной износоустойчивостью, высокой добротностью в СВЧ-диапазоне, а также прекрасной стабильностью по температуре, частоте и рабочему напряжению (табл.3). Конструкция конденсаторов позволяет добиться точной и плавной перестройки емкости. Например, для конденсаторов моделей GU и GW (модели с выступающим шлицем) подстроечный элемент смещается на 1 мм за пять оборотов, а для конденсаторов серии GN (с утопленным шлицем) - за семь оборотов. Диапазон рабочих температур конденсаторов этой серии: от -55 до 125°C, рабочее напряжение - 500 В. Напряжение электрической прочности диэлектрика при 25°C не ниже 1000 В.

Таблица 3. Характеристики подстроечных конденсаторов на основе сапфира

	Емкос	ть, пФ	Добротность на	
Модель	Мин.	Макс.	частоте 250 МГц, мин.	
GNF1R200, GNF1R250, GUF1R200, GUF1R250	0,3	1,2	4000	
GNF2R500, GNF2R550, GWF2R500, GWF2R550	0,4	2,5	3000	
GNF4R500, GNF4R550, GWF4R500, GWF4R550	0,6	4,5	2000	
GNF8R000, GNF8R050, GWF8R000, GWF8R050	0,8	8,0	1000	

Сопротивление изоляции не менее 10^6 МОм при напряжении 500 В.

Керамические высоковольтные немагнитные подстроечные конденсаторы серии SGNM (рис.10) специально разработаны для использования в катушках ЯМР (ядерный магнитный резонанс) и магнитно-резонансных устройств, а также в генерирующих и приемных цепях этих устройств. Кроме того, триммеры этой серии можно использовать в криогенной технике. Отличительной особенностью конструкции подстроечных конденсаторов серии SGNM является герметичный корпус, способный

Рис.10. Керамические высоковольтные немагнитные триммеры серии SGNM

Puc.9. Подстроечные конденсаторы компании Sprague Goodman с сапфировым диэлектриком

выдержать внешнее давление не менее 195 кПа. При этом паразитная остаточная магнитная индукция не превышает 20 нТл. Диапазоны перестройки емкости в зависимости от модели составляют от 0,5/5,0 до 10,0/100,0 пФ. Добротность на частоте 25 МГц: от 500 до 3000. Рабочее напряжение в зависимости от модели – от 1,500 до 8,750 В. Напряжение на пробой от 3,000 до 17,500 В соответственно.

Подстроечные конденсаторы серии FilmTrim на основе радиотехнических пластиков компании Sprague Goodman (рис.11) иногда неофициально называют "триммерами шести диэлектриков", поскольку они производятся из шести видов радиотехнических пластиков: обычный фторопласт (PTFE), высокотемпературный фторопласт (High temperature PTFE), полипропилен (PP, Polypropylene), поликарбонат (PC, Polycarbonate), полифенилен сульфид (PPS, Polyphenyl sulfide) и полиимид (PI, Polyimide). Конденсаторы серии FilmTrim выпускаются разных номиналов в широком диапазоне емкостей.

ПАРАМЕТРИЧЕСКИЕ ВАРАКТОРНЫЕ ДИОДЫ

Варакторные диоды компании Sprague Goodman (рис.12) изготавливаются на основе эпитаксиальных мезоструктур кремния, пассивированного диоксидом кремния. Такая структура позволяет получать варакторы с высокой линейностью в середине вольт-емкостной характеристики (рис.13). Варакторы характеризуются высокой

Рис.11. Триммеры серии FilmTrim на основе радиотехнических пластиков

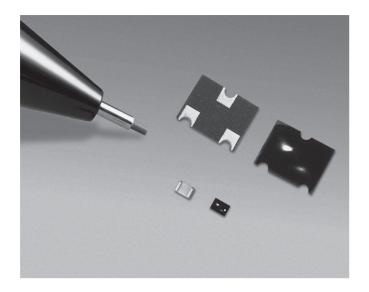
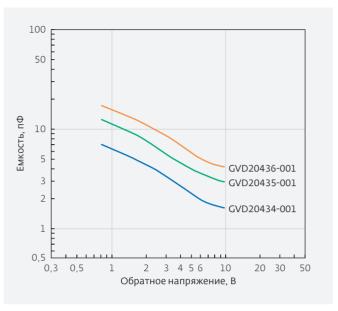



Рис.12. Параметрические варакторные диоды

добротностью и имеют широкий диапазон перестройки. В зависимости от модели, обратное напряжение пробоя при токе 10 мкА и рабочей температуре 25°С составляет 12, 20, 22, 25 или 30 В. Максимальный ток утечки при -10 В и температуре 25°С не превышает 0,05 мкА. Рассеиваемая мощность при температуре 25°С: 250 мВт, а диапазон рабочих температуре 0т -55 (-65)°С до 125°С. Основные области применения варакторов компании Sprague Goodman – кварцевые генераторы с температурной стабилизацией; генераторы, управляемые напряжением, в том числе

Puc.14. Миниатюрные индуктивные элементы серии SurfCoil

Рис.13. Зависимость емкости для некоторых моделей варакторых диодов

кварцевые (кристаллические); низковольтные цепи с ФАПЧ; низковольтные цепи без обратной связи; фазовращатели. Доступны варакторы одинарные (один диод в корпусе) и двойные (два диода с общим катодом в одном корпусе).

МИНИАТЮРНЫЕ ИНДУКТИВНЫЕ ЭЛЕМЕНТЫ

Серия индуктивностей и трансформаторов SurfCoil (рис.14) специально разработана для автоматизированного поверхностного (планарного) монтажа и выдерживает все известные режимы пайки, в частности пайку "волной". В состав серии входят изделия самых разных модификаций: без сердечника и с ферритовым сердечником, бескорпусные и экранированные, постоянные и переменные, низкочастотные и предназначенные для использования в верхнем диапазоне СВЧ. Существуют модели со встроенными ферритовыми фильтрами, установленными с учетом конструкции индуктивностей для снижения внешних и внутренних помех. К трансформаторным изделиям относятся двух- и многообмоточные модели. Средний диапазон рабочих температур составляет -40-125°C, хотя у некоторых моделей он иной. Например, модели GLSN имеют диапазон -40-125°C, а модели GLSV: -40-85°C. Диапазон рабочих температур для корпусных модификаций: 25-85°C.

Корпус индуктивностей всех моделей изготавливается из эпоксидной смолы. У моделей GLC, GLD и GLW в качестве заполнителя добавлен



Рис.15. Настроечные элементы

феррит. Сердечник тоже ферритовый, кроме моделей GLA и GLU, у которых он из немагнитных материалов. Катушка наматывается медным проводом, покрытым полиуретаном. Контактные площадки выполнены из фосфорной бронзы с оловянным покрытием. Погрешность индуктивности не превышает ±10% для моделей GLX, GLY, GLYC, GLZ, GLZB и ±5% для GLZP. Типовой диапазон рабочих температур: 20–85°C, а для моделей GLY, GLYC, GLZ, GLZB и GLZP: -40–85°C.

НАСТРОЕЧНЫЕ УЗЛЫ ДЛЯ МИКРОВОЛНОВОГО ДИАПАЗОНА

Компания Sprague Goodman Electronics предлагает широкую номенклатуру настроечных узлов (рис.15).

Металлические настроечные элементы состоят из металлической втулки с двухсторонней резьбой (внешней и внутренней) и настроечного винта внутри втулки. Внешняя резьба винта и внутренняя резьба втулки совмещены с шагом "через один" и развернуты друг относительно друга на 180°. Поэтому при перемещении настроечного винта втулка работает как пружина, распределяя давление строго по шагу резьбы. Элементы этого типа предназначены для использования в качестве механических компонентов перестройки конденсаторов или любых других устройств. Доступны модели от 2 до 33 ГГц.

Диэлектрические настроечные элементы отличаются от металлических тем, что

регулировочный винт в виде зонда изготовлен из диэлектрика. Эти элементы предназначены для использования в СВЧ-устройствах. Идеально подходят для настройки генераторов на диодах Ганна и лавинно-пролетных диодах.

Элемент для настройки диэлектрических резонаторов специально разработан для настройки или перестройки генераторов и фильтров на диэлектрических резонаторах. Позволяет изменять расстояние между винтом или зондом из разных видов диэлектрика и самим резонатором. Стандартные модели предназначены для работы на частотах от 2 до 18 ГГц.

Настроечный LC-элемент является модификацией стандартного металлического настроечного узла. Обеспечивает фиксированную длину штыря в волноводе, которая может меняться за счет вращения регулировочного винта. Предназначен для применения в объемных коаксиальных резонаторах с непосредственной связью на поперечных электромагнитных волнах. Волновое сопротивление составляет 76 Ом.

Резистивные подстроечные элементы предназначены для регулированного отбора мощности в волноводных устройствах. Количество поглощаемой (отбираемой) мощности определяется глубиной погружения подвижного зонда в волновод. Предназначены для использования на частотах от 1 до 18 ГГц.

СПЕЦИАЛЬНЫЙ МОНТАЖНЫЙ И НАСТРОЕЧНЫЙ ИНСТРУМЕНТ

Компания Sprague Goodman выпускает широкий спектр монтажных и настроечных инструментов – отвертки, монтажные ключи под различные варианты головок, ключи и отвертки с захватом или фиксацией (рис.16). Корпуса обычно изолирующие, чаще всего из нейлона. Существуют модификации с антистатическим покрытием. Наконечники, где это необходимо, изготовлены из закаленной никелированной стали. Существуют модификации с наконечни-

ками из немагнитных и непроводящих материалов.

ЛИТЕРАТУРА

- http://www.spraguegoodman. com/html/trimmer. html#!variable-capacitors/chtp.
- 2. Sprague Goodman, инженерные бюллетени Engineering Bulletin по соответствующим сериям конденсаторов.

Рис.16. Инструменты серий GTT и JFD