# ИНЕРЦИАЛЬНЫЕ МЭМС-ДАТЧИКИ И МОДУЛИ ЕВРОПЕЙСКИХ **ПРОИЗВОДИТЕЛЕЙ**

ОБЗОР НОВИНОК

А.Бекмачев, к.т.н., ЗАО "Радиант-Элком", sensor@ranet.ru

Обзор посвящен новым акселерометрам, гироскопам и инерциальным измерительным модулям, которые применяются для стабилизации и управления подвижными объектами, в пилотажном и навигационном оборудовании.

### ПРОДУКЦИЯ SILICON SENSING SYSTEMS, ВЕЛИКОБРИТАНИЯ



Компания Silicon Sensing совсем

недавно праздновала 100-летнюю годовщину выпуска своего первого электромеханического гироскопа, сконструированного Элмером Сперри. За прошедший век предприятие сохранило и упрочило свое положение среди ведущих производителей и поставщиков компонентов для систем навигации и управления движением. В новое тысячелетие компания вошла, обладая современными полупроводниковыми технологиями и солидным набором инерциальных датчиков и модулей на базе микроэлектромеханических систем (МЭМС).

Среди продукции Silicon Sensing необходимо особо отметить линейку массовых недорогих миниатюрных гироскопов PinPoint CRM, выполненных на основе пьезокерамического вибрирующего кольца. Сборка из чувствительного элемента и блока обработки сигнала размещена в герметичном металлокерамическом корпусе для обеспечения вибрационной и ударной стойкости. Наличие цифрового (SPI) и аналогового интерфейсов, широкая полоса пропускания, низкие собственные шумы, возможность измерять угловые скорости до 1200-2700 °/с расширяют область применения гироскопов: от управления электросамокатами Segway до простейшего пилотажного оборудования. Существенным преимуществом серии CRM является наличие нескольких типов корпусов с различным положением чувствительного элемента: в плоскости микросхемы, перпендикулярно и с наклоном 20°, что позволяет потребителю устанавливать эти микросхемы без применения дополнительных адаптеров, но с одним из трех углов чувствительного элемента

относительно плоскости печатной платы. Семейство гироскопов PinPoint (табл.1) в настоящее время включает модели CRM100, CRM200 и CRM120, а также их вибростойкие версии CRM102 и CRM202.

Для ускорения ОКР и интеграции гироскопов в новые изделия Silicon Sensing выпускает макетные платы 400046-0100, 400046-0200, 400046-0300 с заранее установленными гироскопами, электронными компонентами, перемычками для формирования различных режимов работы и готовыми контактными площадками для подключения к внешним интерфейсам. Очень часто потребители используют такие платы в качестве ОЕМ-компонентов для встраивания в собственные изделия.

Стремясь к лидерству на рынке инерциальных датчиков и систем, компания Silicon Sensing не могла оставить без внимания компоненты для измерения параметров линейного движения. Итогом целенаправленной научной разработки и совершенствования собственной технологии МЭМСкомпонентов стал выпуск семейства 2-компонентных сборок прецизионных акселерометров емкостного типа Gemini CAS200 (табл.2) в компактных металлокерамических корпусах. Чувствительный элемент изготовлен по технологии кремний-настекле, структура из кристаллического кремния расположена в полости между двух стеклянных пластин. Блок из двух ортогональных акселерометров вместе со специализированным управляющим контроллером помещен в наполненный азотом частично вакуумированный металлокерамический корпус размером  $10,4 \times 6,0 \times 2,2$  мм, поскольку такая конструкция лучше противостоит конденсации влаги в корпусе в сравнении с пластиковыми корпусами, применяемыми другими производителями

**Таблица 1.** Основные характеристики гироскопов PinPoint и макетных плат

|                                  |                    | PinPoint CRM100,<br>CRM102          | PinPoint CRM200,<br>CRM202 |  |  |
|----------------------------------|--------------------|-------------------------------------|----------------------------|--|--|
| Наименование                     |                    | CRM100 CYYMLLLDDSSSSR Made in Japan | ONACIO APAR                |  |  |
| Тип корпуса                      |                    | LCC17 5,7×4,8×1,2 MM                |                            |  |  |
| Способ подключения               |                    | Паі                                 | йка                        |  |  |
| Дрейф нуля (систематическая ошиб | ка), °/ч           | 24-4                                | 0; 80                      |  |  |
| Диапазон измерений               | SPI, °/c           | ±75; ±150; ±300; ±9                 | 900; ±1200; ±2700          |  |  |
| дианазон измерении               | аналоговый, °/с    | ±75; ±150; ±300; ±9                 | 900; ±1200; ±2700          |  |  |
| Дрейф нуля в температурном диа-  | SPI, °/c           | ±                                   | 3                          |  |  |
| пазоне                           | аналоговый, °/с    | ±                                   | 3                          |  |  |
| Случайный угловой уход, °/√ч     |                    | 0,:                                 | 28                         |  |  |
| Чувствительность (масштабный     | SPI, LSB/°/c       | 96; 48                              | ; 24; 8                    |  |  |
| коэффициент)                     | аналоговый, мВ/°/с | [0,012; 0,006; 0,003                | ; 0,001]×Vdd/3 B/°/c       |  |  |
| Температурное смещение чувстви-  | SPI, %             | ±1-3; 36                            |                            |  |  |
| тельности                        | аналоговый, %      | ±1-3; 36                            |                            |  |  |
| Нелинейность чувствительности    | SPI, %             | 0,16-0,2                            |                            |  |  |
| TICHINICUITOCTB TYBETBUTCHBUTCH  | аналоговый, %      | 0,06-0,2                            |                            |  |  |
| Собственный шум (СК3), SPI, °/с  |                    | 0,018-0,025                         |                            |  |  |
| Полоса пропускания, Гц           |                    | 5–160                               |                            |  |  |
| Диапазон рабочих температур, °C  |                    | -40-105; -20-85                     |                            |  |  |
| Стойкость к ударам, д            |                    | 500 (1 мс) / 10 000 (0,1 мс)        |                            |  |  |
| Стойкость к вибрации (СКЗ), д    |                    | 12 (в полосе 10-5000 Гц)            |                            |  |  |
| Время включения, с               |                    | 0,25-1                              |                            |  |  |
| Напряжение питания, В            |                    | 2,7-3,6                             |                            |  |  |
| Потребляемый ток, мА             |                    | 5                                   |                            |  |  |
| Масса, г                         |                    | 0,1                                 |                            |  |  |
|                                  | Макетные п         | латы                                |                            |  |  |
| 400046-0300 (CRM100 и 2          | 2xCRM200)          | 400046-0100 (CRM100)                | 400046-0200 (CRM200)       |  |  |
| 25 мм                            |                    | 12 MM                               | 12 MM                      |  |  |



Рис.1. Расположение датчиков в гибридной сборке CMS300

Линейка акселерометров в настоящее время состоит из 5 моделей (от CAS211 до CAS215), перекрывающих диапазон измерений от 0,85 до 96 g. По аналогии с апробированным на миниатюрных гироскопах семейства CRM техническим решением, для каждой из базовых моделей предусмотрена комплементарная пара с ортогональным расположением блока чувствительных элементов (от CAS291 до CAS295). Этот набор компонентов позволяет не только создавать компактные измерительно-управляющие системы на плате, но и обеспечивать горячее резервирование или взаимную коррекцию показаний. Едва появившись на рынке, акселерометры CAS200 уже успешно конкурируют с продукцией других производителей благодаря высоким линейности и стабильности, незначительным собственным шумам, широкой полосе пропускания, наличию аналогового и цифрового выхода, встроенному термодатчику, расширенному диапазону рабочих температур, малой потребляемой мощности и низкой удельной стоимости.

Следуя концепции поддержки пользовательских разработок, производитель для каждой из моделей семейства предлагает макетную плату CAS2xx-02-0300 размером 24×36 мм с краевым многоконтактным разъемом для подключения к аппаратуре управления и сбора данных. Цена платы с компонентами весьма незначительно превышает цену самого датчика, что оказывается приятным сюрпризом для разработчика.

Логичным развитием освоенных технологий явилось создание фирмой семейства комбинированных датчиков (инерциальных измерительных модулей) Orion CMS300/CMS390 (табл.3). Удачно сочетая собственные проверенные ранее технические решения, производитель разместил в металлокерамическом корпусе размером 10,4×6,0×2,2 мм гироскоп с осью

чувствительности Z и два акселерометра с осями чувствительности Х и Ү. В итоге получился функционально законченный гибридный блок, способный выполнять функции системы курсовой устойчивости для наземного транспорта. Логичным продолжением этой концепции стал парный модуль с ортогональным расположением аналогичного блока датчиков. Применение такой пары позволяет создавать весьма недорогие многоосевые системы управления движением с горячим резервированием внутри блока. Компоновка чувствительных элементов в корпусе CMS300 показана на рис.1.

Основные отличительные особенности комбинированных датчиков семейства Orion: только цифровой выход, высокая точность и стабильность, широкая полоса пропускания, высокая стойкость к воздействию ударов и вибраций, расширенный диапазон рабочих температур, возможность индивидуально конфигурировать диапазон измерений и полосу пропускания для каждого канала гироскопа и акселерометра, малая потребляемая мощность, низкая удельная стоимость.

Отладочные платы CMS300-02-0302 и CMS390-02-0302 имеют уже привычный размер 24×36 мм, не требуют аппаратного конфигурирования и позволяют производить программную настройку режимов работы по встроенному интерфейсу SPI.

Отличительной особенностью команды Silicon Sensing является поддержание обратной связи с клиентами, это позволяет оперативно решать возникающие у потребителей технические проблемы, а сама компания приобретает глубокое понимание потребностей рынка, что позволяет концентрировать усилия на прорывных направлениях. В настоящий момент наиболее ожидаемое событие – анонс коммерческих изделий на основе самого современного чувствительного элемента индукционного типа SGH03 с увеличенной добротностью - поколение VSG3<sup>QMAX</sup>. Предполагается, что гироскоп CRS39-03 (рис.2) с SGH03 "на борту" сможет обеспечить дрейф нуля не более 0,08-0,1°/ч, уже позволяющий реализовать функцию указания на северный полюс; показатель случайного ухода не более 0,0083-0,015°/√ч (дисперсия Аллана) и собственный шум в состоянии покоя не более 0,01/с, что вполне сопоставимо с характеристиками волоконно-оптического гироскопа. Диапазон измеряемых угловых скоростей ±25°/с. Конструкция разработана с учетом возможности установки блока в цилиндрические приборные отсеки внутренним диаметром 25 мм.

По габаритам, интерфейсу и прочим функциональным характеристикам CRS39-03 полностью соответствует своему предшественнику – гироскопу CRS39-01, уже применяемому в геофизическом оборудовании и путеизмерительной аппаратуре на железнодорожном транспорте.

Еще одно событие, запланированное на 2014 год – начало серийного выпуска нового семейства 6-компонентных инерциальных измерительных модулей DMU10 (рис.3), которые призваны заместить

"долгожителя" DMU02. В новом модуле применено 3 комбинированных датчика семейства Orion, 3 оси гироскопа имеют диапазон измерения по ±300°/с, 3 оси акселерометра обеспечивают измерения в диапазоне ±10 g, дополнительно в модуле установлено 2 независимых датчика температуры. Впервые в изделиях Silicon Sensing обмен данными организован по интерфейсу RS422. Благодаря новой

**Таблица 2.** Основные характеристики 2-осевых акселерометров семейства Gemini CAS200 и отладочных средств для них

|                                            |                                                                                                                                                                                                                              | Gemini CAS200 (CAS211/291, 212/292, 213/293, 214/294, 215/295) |  |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| Наименование                               | SILCON SENSING. CAS 200 YYMMLLL XXXX O Made in Japan PPYMMLLLFCD |                                                                |  |  |
| Тип корпуса                                |                                                                                                                                                                                                                              | LCC14 10,4×6,0×2,2 мм                                          |  |  |
| Способ подключения                         |                                                                                                                                                                                                                              | Пайка                                                          |  |  |
| Интерфейс                                  |                                                                                                                                                                                                                              | Аналоговый; SPI                                                |  |  |
| Диапазон измерений, д                      |                                                                                                                                                                                                                              | ±0,85; ±2,5; ±10; ±30; ±96                                     |  |  |
| Дрейф нуля в температурном диапазоне, мg   |                                                                                                                                                                                                                              | ±50; ±50; ±50; ±150; ±500                                      |  |  |
| Чувствительность                           | LSB/g                                                                                                                                                                                                                        | 33 500; 11 000; 2 800; 1 050; 300                              |  |  |
| (масштабный коэффициент)                   | мВ/д                                                                                                                                                                                                                         | 1 150; 375; 96; 36; 10                                         |  |  |
| Температурное смещение чувствительности, 9 | %                                                                                                                                                                                                                            | 1,2                                                            |  |  |
| Нелинейность чувствительности (от полной ш | ікалы), %                                                                                                                                                                                                                    | 0,5; 0,5; 2,0; 2,0; 2,0                                        |  |  |
| Собственный шум (СК3), мкд√Гц              |                                                                                                                                                                                                                              | 50; 150; 150; 350; 1200                                        |  |  |
| Полоса пропускания, Гц                     |                                                                                                                                                                                                                              | 170/250                                                        |  |  |
| Диапазон рабочих температур, °C            |                                                                                                                                                                                                                              | -40-125                                                        |  |  |
| Стойкость к ударам, д                      |                                                                                                                                                                                                                              | 1000 (полусинусоид. 1 мс)                                      |  |  |
| Коэффициент сглаживания вибраций, мg/g²    |                                                                                                                                                                                                                              | 0,15; 0,15; 0,15; 0,1; 0,1 (случайн. в полосе 20–20 000 Гц)    |  |  |
| Время включения, с                         |                                                                                                                                                                                                                              | 0,01-0,02                                                      |  |  |
| Напряжение питания, В                      |                                                                                                                                                                                                                              | 2,7–3,6                                                        |  |  |
| Потребляемый ток, мА                       | 3–5                                                                                                                                                                                                                          |                                                                |  |  |
| Масса, г                                   | 0,4                                                                                                                                                                                                                          |                                                                |  |  |
| Макетная плата CAS2xx-02-0302              | 24 MM                                                                                                                                                                                                                        |                                                                |  |  |

**Таблица 3.** Основные характеристики комбинированных инерциальных датчиков Orion CMS300/CMS390 и отладочных средств для них

|                                         |                                                                    | Orion CMS300                                          | Orion CMS390     |  |
|-----------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|------------------|--|
| Наименование                            | SILICONS SENSING. CM 3300 PPYYMMILLIDD Made In Japan VYMMILLI XXXX | SILICONC<br>SENSING<br>GMS90<br>GMS90<br>GMMS90 HABAN |                  |  |
| Состав                                  |                                                                    | Гироскоп + 2-осев                                     | вой акселерометр |  |
| Тип корпуса и габариты в мм             |                                                                    | LCC12 10,4×6,0×2,2 LCC12 10,4×6,7×2,7                 |                  |  |
| Способ подключения                      |                                                                    | паі                                                   | йка              |  |
| Интерфейс                               |                                                                    | S                                                     | PI               |  |
|                                         | акселерометр, д                                                    | ±2,5                                                  | ; ±10            |  |
| Диапазон измерений                      | гироскоп, °/с                                                      | ±150;                                                 | ±300             |  |
|                                         | акселерометр, мд                                                   | ±30;                                                  | ; ±75            |  |
| Дрейф нуля в температурном диапазоне    | гироскоп, °/с                                                      | ±1,7                                                  | 5; ±1            |  |
| Чувствительность (масштабный коэффи-    | акселерометр, LSB/g                                                | 12800                                                 | ); 3200          |  |
| циент)                                  | гироскоп, LSB/°/с                                                  | 204,8;                                                | ; 102,4          |  |
| Температурное смещение чувствитель-     | акселерометр, %                                                    | <±2,                                                  | 5; ±1            |  |
| ности                                   | гироскоп, %                                                        | <±2                                                   | ; ±1             |  |
|                                         | акселерометр, %                                                    | <±0,5; <±0,12                                         |                  |  |
| Нелинейность чувствительности           | гироскоп,%                                                         | <±0,17; <±0,10                                        |                  |  |
| (C) | акселерометр                                                       | 2 мg; 1 мg                                            |                  |  |
| Собственный шум (СК3)                   | гироскоп, °/с                                                      | 0,1;                                                  | 0,06             |  |
|                                         | акселерометр, Гц                                                   | 45; 62; 95; 190                                       |                  |  |
| Полоса пропускания                      | гироскоп, Гц                                                       | 45; 55;                                               | 90; 117          |  |
| Диапазон рабочих температур, °C         |                                                                    | -40-125                                               |                  |  |
| Стойкость к ударам, д                   |                                                                    | 95 (полусинусоид., 6 мс)                              |                  |  |
| Стойкость к вибрации (СК3), д           |                                                                    | 8,85 (в полосе                                        | е 10–5000 Гц)    |  |
| Время включения, с                      |                                                                    | 0,15-0,30                                             |                  |  |
| Напряжение питания, В                   |                                                                    | 3,15–3,45                                             |                  |  |
| Потребляемый ток, мА                    | 8                                                                  |                                                       |                  |  |
| Масса, г                                | 0,4;                                                               | 0,6                                                   |                  |  |
|                                         | макетна                                                            | ая плата                                              |                  |  |
|                                         |                                                                    | CMS300-02-0302                                        | CMS390-02-0302   |  |
| Средства поддержки разработчиков        | 24 MM                                                              | 24 MM                                                 |                  |  |



Рис.2. Прототип гироскопа CRS39-03

компонентной базе, DMU10 будет отличаться низким уровнем энергопотребления. Модуль доступен в двух вариантах: бескорпусной DMU10-01 – ОЕМ-плата габаритными размерами 22×37×11 мм и DMU10-02 в прочном анодированном алюминиевом корпусе с габаритами 25×45×16 мм.

## ПРОДУКЦИЯ SENSONOR AS, НОРВЕГИЯ



Норвежский производитель полного цикла впервые представил линейку "тактических" гироскопов STIM в 2010 году\*. К настоящему времени на основе базового 3-осевого блока гироскопов STIM210 (табл.4) компания создала полноценный инерциальный измерительный модуль STIM300 (табл.4) с 9 чувствительными элементами для измерения параметров вращательного и линейного движения и продолжает наращивать свое присутствие в отраслях, требующих исключительной надежности конструкции, точности и стабильности показаний.

Такие компании как NovAtel Inc. и LiDAR USA (Fagerman Technologies, Inc.) уже сообщили об интегрировании STIM300 в свои системы позиционирования и картографирования. Важным новшеством, реализованным начиная с модели STIM300 Rev. D, является программно управляемая компенсация линейной составляющей для гироскопов GYRO G-COMP. В результате удалось добиться снижения смещения уровня нулевого сигнала гироскопа под влиянием линейного ускорения с 15 до 1°/ч/g и улучшить значение масштабного коэффициента (линейности) с  $400\cdot10^{-6}$ /g до  $30\cdot10^{-6}$ /g. Меню настройки параметров компенсации включает 4 раздела: стандартные и пользовательские фильтры и их комбинации раздельно для каждой из осей. Еще одним изменением, расширившим функциональные возможности модуля, стала возможность назначения пользователем произвольной скорости обмена данными по интерфейсу RS-422, что открыло путь для интеграции STIM300



**Рис.3**. Внешний вид прототипов инерциальных измерительных модулей DMU10-01 и DMU10-02

в системы с ограниченным по скорости потоком телеметрических данных.

Существенному обновлению подвергся и модельный ряд. Вместо единственной ранее модели, потребитель теперь имеет возможность заказать наиболее подходящую для своих задач конфигурацию:

- STIM300 ±400°/c; ±2, ±5, ±10, ±30, ±80 g или
- STIM300  $\pm 800$ °/c;  $\pm 5$ ,  $\pm 10$ ,  $\pm 30$ ,  $\pm 80$  g.

Необходимо отметить, что для линейки STIM300 ±800°/с в отдельных случаях может потребоваться экспортное лицензирование.

В качестве дополнения, повышающего удобство работы с модулями, Sensonor в 2014 году начинает поставки компактного универсального кабеля со встроенным преобразователем интерфейса для подключения STIM210 и STIM300 к порту USB переносного компьютера на скорости не менее 921,6 Кбит/с. Обновленный отладочный набор STIM210/STIM300 Evaluation Kit USB (рис.4) на базе кабеля мод. 84593 не требует предварительной установки драйверов при работе в среде ОС Windows – необходимое программное обеспечение на компьютере, подключенном к глобальной сети, будет установлено автоматически.

### ПРОДУКЦИЯ XSENS TECHNOLOGIES B.V., НИДЕРЛАНДЫ



Инновационная компания Xsens традиционно сильна в разработке и внедрении программного обеспечения (ПО) для систем регистрации движения. Архитектура выпускаемых фирмой инерциальных модулей 4-го поколения – линейки МТі-10 и МТі-100 (табл.5) – позволяет пользователю самостоятельно обновлять прошивки для расширения функциональных возможностей либо создавать свои программные блоки для взаимодействия с модулями на основе бесплатно предоставляемых производителем фрагментов исходного кода. Сами модули МТі, помимо 3 гироскопов и 3 акселерометров, могут содержать электронный магнитный компас и датчик давления воздуха. Модель

<sup>\*</sup> ЭЛЕКТРОНИКА: НТБ, 2010, № 1 и 2011, №1

**Таблица 4.** Гироскопы и инерциальные модули Sensonor

|                                                 | STIM210 Инерциальные модули STIM300                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                           |  |  |
|-------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|--|--|
|                                                 | 1-, 2-, 3-осевой<br>гироскоп                             | 3-осевой<br>гироскоп                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-осевой<br>акселерометр | 3-осевой измеритель наклона (инклинометр) |  |  |
| Наименование                                    |                                                          | STIM300 SQ MONITORING THE SECOND TO A STATE OF |                          | \$TIM300<br>                              |  |  |
| Тип корпуса, масса                              | Прочныї                                                  | й алюминиев                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | вый 44,8×38,6×21,        | ,5 мм; 55 г; IP67                         |  |  |
| Способ подключения                              |                                                          | 15-в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ыв. micro-Dsub           |                                           |  |  |
| Интерфейс                                       |                                                          | RS42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2; 1,843 Мбит/с          |                                           |  |  |
| Компонент                                       | Гироско                                                  | П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Акселерометр             | Измеритель наклона                        |  |  |
| Частота опроса, макс.,Гц                        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000                     |                                           |  |  |
| Дрейф нуля (систематическая<br>ошибка) , °/ч    | 0,5 (дисперсия                                           | Аллана)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,05 мд                  | 0,06 мд                                   |  |  |
| Диапазон измерений, °/с                         | ±400 (динам. перегрузка до<br>5000)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±10 (до 80) д            | ±1,7 g                                    |  |  |
| Дрейф нуля на температурном<br>диапазоне        | 9-10°/ч (CK3)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±2 мg (СК3)              | ±2 мg (СК3)                               |  |  |
| Случайный угловой уход                          | 0,15 (дисперсия Аллана) °/√ч                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,06 м/с/√ч              | 0,08 м/с/√ч                               |  |  |
| Чувствительность (масштабный коэффициент)       | 24 бита, 0,22°/ч                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 бита,<br>1,9 мкд      | 24 бита; 0,2 мкд                          |  |  |
| Температурное смещение чув-<br>ствительности, % | ±0,05                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±0,03                    | ±0,05                                     |  |  |
| Нелинейность чувствительности                   | ±25±50 p                                                 | pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ±100 ppm                 | ±500 ppm                                  |  |  |
| Полоса пропускания, Гц                          |                                                          | 16;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33; 66; 131; 262         |                                           |  |  |
| Диапазон рабочих температур, °C                 |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -40-85                   |                                           |  |  |
| Стойкость к ударам, д                           |                                                          | 1500 (по                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | лусинусоид., 0,5 м       | ис)                                       |  |  |
| Стойкость к вибрации (CK3), g                   | MI                                                       | L-STD-810 E 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.4 (в полосе 20-       | -2000 Гц)                                 |  |  |
| Время включения, с                              |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/<5                     |                                           |  |  |
| Напряжение питания, В                           | 4,5-5,5                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                           |  |  |
| Потребляемый ток, мА                            | 300 400 макс.                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                           |  |  |
| Отладочный набор                                | STIM210/STIM300 Eval. Kit USB  STIM210/300 Eval. Kit PCI |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                           |  |  |



**Рис.4.** Новый универсальный кабель для STIM210/ STIM300 Evaluation Kit USB

MTi-G-700 имеет интегрированный приемник сигналов спутниковой системы навигации GPS, что повышает точность определения положения и направления за счет взаимной коррекции данных, получаемых от инерциального блока датчиков и спутникового канала.

В 2014 году для поддержки пользователей и разработчиков систем управления движением компания Xsens выпустила для среды ОС Windows обновленную и расширенную версию программного пакета МТ Software Suite версии 4.2.1, которая включает следующие программные блоки:

- MT Manager программа для конфигурирования и управления модулями MTi, а также для записи данных.
- MT SDK комплект средств для разработки собственного ПО, содержащий следующие компоненты.
  - XsensDeviceApi.dll (XDA) библиотека динамической компоновки DLL языка С.
  - Исходные файлы XDA преобразователь для языков С и C++.
  - о Пример исходного кода для MATLAB, DLL C, DLL C++ и данных типа shared object.
- Magnetic Field Mapper executable (GUI) and MFM SDK исполняемый модуль (графический пользовательский интерфейс) и программный отладочный набор для калибровки встроенного электронного компаса.
- Firmware Updater универсальная программа обновления прошивки для всех моделей инерциальных модулей Xsens (требует сеансного подключения к глобальной сети).
- Комплект документации в электронном виде. Основные функциональные блоки MT Software Suite доступны также и для Linux. Начиная с версии 4.2.1, в модулях MTi можно реализовать интерфейс RS485 и сохранить точность определения

**Таблица 5.** Инерциальные модули Xsens

|                                                       | MTi-10 IMU, MTi-20 VRU, MTi-30 AHRS                                                                                                                                    |                            |                                | MTi-100 IMU, MTi-200 VRU |                            |  |  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------|--------------------------|----------------------------|--|--|
|                                                       | Гироскопы                                                                                                                                                              | Акселерометры              | Магнитометр<br>(AHRS, GPS/INS) | Гироскопы                | Акселерометры              |  |  |
| Диапазон изме-<br>рений                               | 450°/c                                                                                                                                                                 | 50 м/с <sup>2</sup>        | ±80 мкТл                       | 450°/c                   | 50 м/с <sup>2</sup>        |  |  |
| Смещение нуля                                         | 18°/ч                                                                                                                                                                  | 40 мкд                     | -                              | 10°/ч                    | 40 мкд                     |  |  |
| Повторяемость<br>смещения нуля<br>(1 год)             | 0,2-0,5°/c                                                                                                                                                             | 0,03-0,05 м/c <sup>2</sup> | -                              | 0,2-0,5°/c               | 0,03-0,05 м/с <sup>2</sup> |  |  |
| Полоса пропуска-<br>ния (–3дБ)                        | 415 Гц                                                                                                                                                                 | 375 Гц                     | _                              | 450 Гц                   | 375 Гц                     |  |  |
| Плотность шума                                        | 0,03−0,05°/с/√Гц                                                                                                                                                       | 80-150 мкд/√Гц             | 200 мкГн/√Гц                   | 0,01−0,015°/с/√Гц        | 80−150 мкд/√Гц             |  |  |
| Линейность (пол-<br>ной шкалы)                        | 0,0001                                                                                                                                                                 | 0,0003                     | 0,001                          | 0,0001                   | 0,0003                     |  |  |
| Точность по крену<br>и тангажу, ста-<br>тика/динамика | 0,4/1,5°                                                                                                                                                               | -                          | -                              | 0,2-0,25°/<br>0,3-1,0°   | _                          |  |  |
| Точность по<br>рысканию (AHRS,<br>GPS/INS)            | 1,0°                                                                                                                                                                   | -                          | -                              | 1,0°                     | -                          |  |  |
| Диапазон рабо-<br>чих температур                      | -40-85°C                                                                                                                                                               |                            |                                |                          |                            |  |  |
| Напряжение<br>питания                                 | 4,5-34 B или 3,3 B                                                                                                                                                     |                            |                                |                          |                            |  |  |
| Интерфейс                                             |                                                                                                                                                                        | RS-                        | -232/RS-422/UART/I             | USB                      |                            |  |  |
| Корпус                                                | MTi-OEM: плата 37×33×12 мм, 11 г, 24-контактный соединитель МТi: анодированный алюминий 57×42×23 мм, 52 г, IP67, соединитель с цанговым фиксатором (push-pull) 9-конт. |                            |                                |                          |                            |  |  |
|                                                       |                                                                                                                                                                        |                            |                                |                          |                            |  |  |
| Отладочный<br>набор, ПО раз-<br>работчика             | Набор MTi-x0-DK, включая MT SDK  Набор MTi-x00-DK, включая MT SDK                                                                                                      |                            |                                |                          |                            |  |  |
|                                                       |                                                                                                                                                                        |                            |                                |                          |                            |  |  |

| MTi-300 AHRS, MTi-G-700 GPS/INS |                                                            |                                                                            | MTw                                                                        |               |              |                      |  |  |
|---------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------|--------------|----------------------|--|--|
|                                 | Магнитометр Датчик давле-<br>(AHRS, GPS/INS) ния (GPS/INS) |                                                                            | Гироскопы                                                                  | Акселерометры | Магнитометр  | Датчик давле-<br>ния |  |  |
|                                 | ±80 мкТл                                                   | 300-1100 мбар                                                              | 1200°/c                                                                    | 160 м/с²      | ±150 мкТл    | 300-1100 мбар        |  |  |
|                                 | -                                                          | _                                                                          | 20°/ч                                                                      | _             | _            | 100 Па/год           |  |  |
|                                 | -                                                          | -                                                                          | _                                                                          | _             | -            | -                    |  |  |
|                                 | -                                                          | -                                                                          | 150 Гц                                                                     | 150 Гц        | 60 Гц        | _                    |  |  |
| 2                               | 200 мкГн/√Гц                                               | 0,01 мбар/√Гц                                                              | 0,05°/с/√Гц                                                                | 0,003 g/√Гц   | 150 мкГн/√Гц | 0,85 Па/√Гц          |  |  |
|                                 | 0,001                                                      | 0,001                                                                      | 0,001                                                                      | 0,003         | 0,002        | 0,0005               |  |  |
|                                 | -                                                          | -                                                                          | 0,5/2°                                                                     | -             | -            | -                    |  |  |
|                                 | -                                                          | -                                                                          | 1,0°                                                                       | -             | -            | -                    |  |  |
|                                 | -40-85°C                                                   |                                                                            | -10−60°C                                                                   |               |              |                      |  |  |
|                                 | 4,5-34 B                                                   | или 3,3 В                                                                  | встроенная батарея Li-ion, заряд 1 ч / разряд 3,5 ч / режим ожидания 200 ч |               |              |                      |  |  |
|                                 | RS-232/RS-42                                               | 22/UART/USB                                                                | ISM 2,4 ГГц, IEEE 802.15.4 PHY, 20-50 м                                    |               |              |                      |  |  |
| ни                              | ій 57×42×23 мм,<br>нитель с цангов                         | оованный алюми-<br>55 г, IP67, соеди-<br>ым фиксатором<br>. + коаксиальный | MTw: пластик 58,7×34,5×14,5 мм, 27 г (батарея 9 г)                         |               |              |                      |  |  |
|                                 | -                                                          |                                                                            |                                                                            |               |              |                      |  |  |
| На                              | абор MTi-G-700<br>SE                                       | -DK, включая MT<br>DK                                                      | Набор MTw-DK-Lite, включая MT SDK                                          |               |              |                      |  |  |
|                                 |                                                            |                                                                            |                                                                            |               |              |                      |  |  |

**Таблица 6.** Акселерометры Colibrys

|                                         |          | 1                       | 1                                  | 1                     |                                                                          |                                                                   |                              |
|-----------------------------------------|----------|-------------------------|------------------------------------|-----------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------|
| Функци-<br>ональное<br>назначение       | Модель   | Тип корпуса             | Диа-<br>пазон<br>измере-<br>ний, д | Дрейф<br>нуля, мд     | Стабиль-<br>ность нуля в<br>течение года<br>(при 1000 g),<br>типовое, мд | Чувствитель-<br>ность (мас-<br>штабный<br>коэффици-<br>ент), мВ/д | Нели-<br>ней-<br>ность,<br>% |
|                                         | MS7002.3 | TO8 ø15,55×3,9          | ±2                                 | <10                   | 2 (6000 g)                                                               | 500±4                                                             | <0,8                         |
| Датчик<br>вибрации                      | MS7010.3 |                         | ±10                                | <50                   | 10 (6000 g)                                                              | 100±1                                                             | <0,9                         |
|                                         | MS8002.D | LCC48                   | ±2                                 | <10                   | 1,5                                                                      | 1000±8                                                            | <0,8                         |
| Акселеро-                               | MS8010.D | 14,2×14,2×2,4 мм        | ±10                                | <50                   | 7,5                                                                      | 200±2                                                             | <0,9                         |
| метр                                    | MS8030.D | 100 00 mms              | ±30                                | <150                  | 22                                                                       | 66,6±1                                                            | <0,9                         |
|                                         | MS8100.D |                         | ±100                               | <500                  | 75                                                                       | 20±1                                                              | <1                           |
| Датчик<br>наклона<br>(инклино-<br>метр) | MS9001.D |                         | ±1                                 | <5                    | 0,15                                                                     | 2000±8                                                            | <0,7                         |
| Акселеро-                               | MS9002.D | LCC20<br>8,9×8,9×3,2 мм | ±2                                 | <10                   | 0,3                                                                      | 1000±8                                                            | <0,8                         |
|                                         | MS9005.D |                         | ±5                                 | <25                   | 0,75                                                                     | 400±4                                                             | <0,8                         |
|                                         | MS9010.D |                         | ±10                                | <50                   | 1,5                                                                      | 200±2                                                             | <0,9                         |
|                                         | MS9030.D |                         | ±30                                | <150                  | 4,5                                                                      | 66,6±1                                                            | <0,9                         |
|                                         | MS9050.D |                         | ±50                                | <250                  | 7,5                                                                      | 40±1                                                              | <0,9                         |
|                                         | MS9100.D |                         | ±100                               | <500                  | 15                                                                       | 20±1                                                              | <1                           |
|                                         | MS9200.D |                         | ±200                               | <1000                 | 30                                                                       | 10±1                                                              | <1                           |
|                                         | VS9002.D |                         | ±2                                 | <10                   | 1,5 (6000 g)                                                             | 1000±8                                                            | <0,8                         |
|                                         | VS9005.D | LCC20                   | ±5                                 | <25                   | 3,75 (6000 g)                                                            | 400±4                                                             |                              |
| _                                       | VS9010.D | 8,9×8,9×3,2 мм          | ±10                                | <50                   | 7,5 (6000 g)                                                             | 200±2                                                             |                              |
| Датчик<br>вибрации                      | VS9030.D | Colin                   | ±30                                | <150                  | 22 (6000 g)                                                              | 66,6±1                                                            | <1                           |
|                                         | VS9050.D | City Oil                | ±50                                | <250                  | 37,5 (6000 g)                                                            | 40±1                                                              | `1                           |
|                                         | VS9100.D |                         | ±100                               | <500                  | 75 (6000 g)                                                              | 20±1                                                              |                              |
|                                         | VS9200.D |                         | ±200                               | <1000                 | 150 (6000 g)                                                             | 10±1                                                              |                              |
| Датчик<br>наклона<br>(инклино-<br>метр) | RS9002.B | LCC20<br>8,9×8,9×3,2 мм | ±2                                 | <10 (<0,1<br>за 48 ч) | <0,5                                                                     | 1000±8                                                            | <0,8                         |
| Акселеро-<br>метр                       | RS9010.B |                         | ±10                                | <50 (<0,5<br>за 48 ч) | <2                                                                       | 200±2                                                             | <0,9                         |

|   | Полоса<br>пропу-<br>скания<br>(–3 дБ),<br>Гц | Спек-<br>тральная<br>плотность<br>шумов,<br>мкВ/√Гц | Резо-<br>нансная<br>частота,<br>кГц | Диа-<br>пазон<br>рабочих<br>темпе-<br>ратур,°С | Отладочная плата                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---|----------------------------------------------|-----------------------------------------------------|-------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | ≥800                                         | 7                                                   | 1,4                                 |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | ≥650                                         | 7                                                   | 3,7                                 | -40-125                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 0 >200                                       |                                                     | 1,4                                 |                                                | EVBA-MS8xxx.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 0≥200                                        | 10                                                  | 3,7                                 | FF 12F                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 0≥100                                        | 18                                                  | 6,3                                 | -55-125                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 0≥200                                        |                                                     | 15                                  |                                                | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |                                              |                                                     | -                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 0≥100                                        | 18                                                  | 1,4                                 | -55-125                                        | EVBA-MS9xxx.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                                              |                                                     | 2,9                                 |                                                | (a) -5/3- (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                                              |                                                     | 3,7                                 |                                                | RSSOID AT PROPERTY OF THE PROP |
|   |                                              |                                                     | 6,3                                 |                                                | COLIBRYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                              |                                                     | 11                                  |                                                | w w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                              |                                                     | 15                                  |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                                              |                                                     | 26                                  |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | ≥800                                         |                                                     | 1,3                                 |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | ≥1700                                        |                                                     | 1.1                                 |                                                | EVBA-VS9xxx.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | ≥2400                                        |                                                     | 2                                   |                                                | (a) -5/20- (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |                                              | 25                                                  | 4                                   | -55-125                                        | Colibrus<br>R59010.8<br>9001 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | ≥3000                                        |                                                     | 5,1                                 |                                                | COLIBRYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                              |                                                     | 7,2                                 |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                                              |                                                     | 11                                  |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | >200                                         | 30<br>мкg/√Гц                                       | -                                   | -55-125                                        | EVBA-RS9xxx.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - | >200                                         | 150<br>мкg/√Гц                                      | -                                   |                                                | Correction to the second secon |

положения на прежнем уровне после потери сигнала глобальной спутниковой навигационной системы GPS (для МТі-G-700).

#### ПРОДУКЦИЯ COLIBRYS **COLIBRYS** (SWITZERLAND) LTD., ШВЕЙЦАРИЯ

Этот знаменитый швейцарский разработчик и производитель полного цикла в области МЭМС-датчиков с 2013 года входит в состав группы Sagem (Safran). В январе 2014 года компания сообщила о переезде в Ивердон-Ле-Бен, где построен новый комплекс зданий, включающий штаб-квартиру и производственные помещения общей площадью 3750 м<sup>2</sup>. Российские потребители знакомы, прежде всего, с высокостабильными, малошумящими акселерометрами Colibrys (табл.6), способными работать в при температуре от -55 до 125°C с сигналами от 1 до 200 g и выдерживать ударные воздействия, достигающие 6000 g и даже 20 000 g (модель HS8030.D).

В 2014 году фирма намерена объявить технические характеристики акселерометров сейсмического класса, которые заменят снятые с производства модели SiFlex SF1600, SF2006 и SF3600. Ожидается, что это будет датчик с цифровым интерфейсом и следующими характеристиками (СКЗ означает среднеквадратичное значение):

диапазон измерений ...... ±5 g; динамический диапазон..... >120 дБ; полоса пропускания ...... 0,1-300 Гц; значение шума ...... 0,3 мкg(СК3)/ $\sqrt{\Gamma \mu}$ ; нелинейность .....< 0,005% от полной шкалы.

В будущем мы планируем публиковать отчеты о результатах опытной эксплуатации новых изделий, рассмотренных в данной статье.