ЭЛЕКТРОКОНДЕНСАЦИОННЫЙ МЕТОД СИНТЕЗА

КРЕМНИЯ, УГЛЕРОДА И КАРБИДА КРЕМНИЯ

А.Брыкин, А.Артемов, Д.Арсеньева darsenieva@mail.ru

Благодаря уникальному сочетанию электрических и физикохимических свойств карбид кремния (SiC) нашел широкое применение в силовой электронике и устройствах, предназначенных для тяжелых условий эксплуатации. На базе карбида кремния создаются приборы, работающие под воздействием высоких температур, радиации и химически агрессивных сред. В настоящее время спектр применения карбида кремния расширяется за счет новых перспективных направлений, таких как наноэлектроника, в которой используют наноструктуры, содержащие кремний и углерод. В связи с ростом потребности электронной промышленности в кремнии, углероде и карбиде кремния большой интерес вызывают новые методы синтеза этих материалов. В частности, электроконденсационный метод, не требующий сложного и дорогостоящего оборудования, позволяет снизить затраты, улучшить экологические показатели и безопасность производства. Рассмотрим особенности метода и сравним его с другими известными способами получения этих материалов.

спользование карбида кремния в мощных силовых приборах обусловлено высокой электрической прочностью, широкой запрещенной зоной и высокой удельной теплопроводностью, которая достигает величины 500 Вт/ (м·К) и в несколько раз превосходит аналогичный показатель для кремния и арсенида галлия. Физико-химические свойства карбида кремния позволяют увеличить верхний предел рабочих температур приборов, изготовленных на его основе, до 700°С при сохранении малых токов утечки. К полупроводниковым приборам на основе SiC относятся мощные выпрямительные диоды, диоды Шоттки, тиристоры, биполярные и полевые транзисторы и др.

Компоненты силовой электроники на основе SiC служат базой для развития силовой преобразовательной и импульсной техники, приборов СВЧ-электроники, детекторов ультрафиолетового излучения, счетчиков частиц высокой энергии, терморезисторов (с рабочим интервалом температур до 1500°С), ионно-селективных датчиков, способных работать в агрессивных средах.

Порошковый карбид кремния можно использовать для изготовления нелинейных полупроводниковых резисторов (варисторов), высокотемпературных нагревателей, волновых поглотителей. Практический интерес представляет также керамика на основе карбида кремния, обладающая одновременно высокой термостойкостью

и химической устойчивостью к газовым кислородсодержащим средам.

В настоящее время существует целый ряд способов получения карбида кремния. Рассмотрим наиболее распространенные из них.

МЕТОДЫ ПОЛУЧЕНИЯ КАРБИДА КРЕМНИЯ

Керамику на основе карбида кремния получают путем спекания микронных и субмикронных порошков SiC с небольшими добавками легких элементов (В, Ве, Al, С) в интервале температур 2000...2200°С. Изменяя состав шихты и условия спекания, можно регулировать удельное сопротивление керамики в диапазоне 1·10-4...1·106 Ом·м.

Обычно технический карбид кремния изготавливают в электрических печах при восстановлении кварцевого песка углеродом:

$$SiO_2 + 3C \rightarrow SiC + 2CO$$
.

В температурных условиях до 2000°С образуется кубическая β-модификация SiC, при более высокой температуре восстановления – гексагональная α-модификация. Обычно синтез осуществляется при температуре 1600–1700°С, а свыше 2700°С наблюдается возгонка карбида кремния [1]. Карбид кремния синтезируют в стационарных больших печах, что позволяет получать материал более высокого качества в части размера кристаллов, его чистоты и правильности формы (по сравнению с применением небольших передвижных печей). Производство SiC в стационарных печах большого размера налажено в Голландии (Kolo), США (Washington Mills) и ЮАР (Sublime Technologies).

Для повышения чистоты и выхода целевого продукта по этому способу рекомендуется выполнять процесс в атмосфере азота под давлением до 0,13 МПа или в токе азота со скоростью 0,5-3,3 л/ч [4]. Одна из модификаций этого метода получения карбида кремния - использование в качестве сырья (SiO₂+C) природных углеродистых пород, включающих равномерно распределенные в матрице углерода кремнийсодержащие компоненты слоистых алюмосиликатов и кварца размерами до 10 мкм и не менее 25% неграфитируемого углерода с величиной кремнеземноуглеродного модуля SiO₂/C не более двух [5]. Такой природной углеродистой породой являются шунгиты, залежи которых имеются в Карелии. Нагрев породы до температуры 1400-2100°C со скоростью более 100 град/мин, выдержка при этой температуре в течение 5-30 мин с последующим охлаждением в инертной среде до температуры не более

400°С позволяют получать с выходом до 85% смесь 16–30% аморфных и/или кристаллических нановолокон карбида кремния диаметром 5–500 нм, длиной 0,1–50 мкм и 18–55% гиперфуллеренового углерода в виде многослойных полиэдрических или сфероидальных частиц и волокон диаметром 10–400 нм с расстоянием между слоями 0,342–0,348 нм.

Модификацией процесса получения карбида кремния из шунгита является метод, в соответствии с которым эту породу нагревают при температуре 1600–1800°С в вакуумной печи при остаточном давлении 0,25–1,3 кПа со скоростью 200–300 град/ч, полученный продукт выдерживают при этой же температуре в течение одного-двух часов, а затем охлаждают в печи при остаточном давлении 0,25–1,3 кПа [8].

Помимо шунгита, природным сырьем, из которого можно получить SiC, является рисовая шелуха, как известно, содержащая значительное количество SiO₂. Термообработка предварительно отмытой кислотой рисовой шелухи в углеродном тигле со скоростью нагрева не более 1000 град/мин при температуре 1400°С в течение 6 мин с последующим охлаждением и вторичной термообработкой образовавшегося продукта при 700°С в течение не менее 2 ч позволяют получать целевой продукт с выходом до 88% [6, 7].

Газофазным способом получения SiC является метод [2], который предусматривает двухстадийный синтез. Сначала при температуре 1500°С синтезируют нитрид кремния:

$$3SiF_4 + 4NH_3 \rightarrow Si_3N_4 + 12HF$$
.

Полученную реакционную смесь нахолаживают в интервале температур 0...15°С, при этом фтористый водород конденсируется и отделяется от аммиака, находящегося в газообразном

состоянии. На второй стадии при температуре 1800°С получают SiC в результате взаимодействия нитрида кремния с графитом:

$$Si_3N_4 + 3C \rightarrow 3SiC + 2N_2$$
.

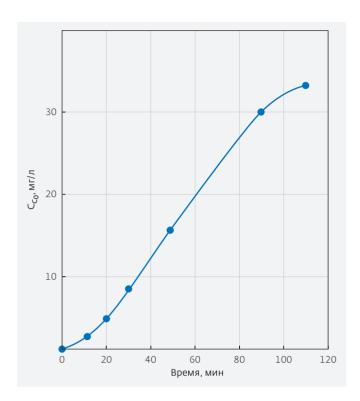
Как утверждают авторы метода [2], по данной технологии можно получать SiC с выходом до 99,5% и содержанием примесей, не превышающим 10^{-6} – 10^{-7} масс. долей, что соответствует требованиям, предъявляемым к полупроводниковым материалам.

Другой способ [3] предусматривает совмещение стадии газофазного получения карбида кремния с его напылением на подложку, нагретую до 1200–1250°С в результате взаимодействия метилтрихлорсилана с водородом. Не прореагировавшие газообразные продукты реакции выделяют путем вымораживания и рециркулируют на основную стадию процесса.

Высокочистый карбид кремния можно получить из порошка или пластины предварительно очищенного монокристаллического кремния, который помещают в реакционную емкость, вакуумируют до величины давления 1·10⁻² мм рт. ст. и нагревают до температуры 1200–1415°С. Затем заполняют реакционную емкость очищенным от влаги и кислорода монооксидом углерода, выдерживают в нем кремний при указанной температуре в течение 5-600 минут и охлаждают. Полученные нановолокна карбида кремния отмывают от диоксида кремния или смеси диоксида кремния с непрореагировавшим кремнием [9]:

 $3Si + 2CO \rightarrow 2SiC + SiO_2$.

ОСНОВЫ ЭЛЕКТРОКОНДЕНСАЦИОННОГО МЕТОДА


В основе электроконденсационного метода (ЭКМ) синтеза материалов лежит процесс пропускания высокочастотного переменного электрического тока (600–900 кГц, 600–900 В) между электродами и крупными частицами, помещенными в жидкую фазу. В качестве жидкой фазы обычно используют воду, однако возможно применение органических растворителей. Нанодисперсные частицы в жидкой фазе (золей) получают в специально разработанном для этих целей реакторе [10, 11]. Электрические параметры процесса регулируют с помощью высокочастотного искрового генератора. Процедуру выполняют при наличии газовой фазы (воздуха, азота, аргона), облегчающей процесс получения золей.

В ходе работы генератора в жидкой фазе между электродами и частицами, помещенными на дно реактора, возникает "тлеющий" искровой разряд. Высокая температура (около 10000°C) в искровом канале приводит к испарению вещества частиц в ограниченном объеме (образование "газового пузыря"). Последующее резкое понижение температуры "газового пузыря" за счет его контакта с жидкой фазой обеспечивает конденсацию пара с образованием наночастиц вещества субмикронного размера (1-30 нм) с высокой удельной поверхностью - до 300 м²/г. Полученные электроконденсационным методом наночастицы вещества агрегативно устойчивы и не оседают на дно реактора. Агрегативную устойчивость золей можно повысить путем введения поверхностно активных веществ (ПАВ), например стеарата натрия.

Свойства нанодисперсных частиц (средний диаметр, удельная поверхность, концентрация) некоторых металлов, полученных электро-

Величины удельной поверхности и средние размеры нанодисперсных частиц некоторых металлов, полученных электроконденсационным методом (по данным электронной микроскопии)

Металл	Напряжение, В	Частота, кГц	Жидкая фаза	Концентрация металла, мг/м	Удельная поверх- ность, м²/г	Средний диа- метр частиц, нм
Палладий	700	850	Циклогексен	0,75	120	15
Кобальт	700	900	Тетралин	0,25	270	2,5
Кобальт	600	800	Тетралин	4,5	270	2,5
Железо	900	900	Тетралин	4,9	250	3
Серебро	700	850	Тетралин	4,7	65	7
Кобальт	850	700	Тетралин	2,3	270	2,5

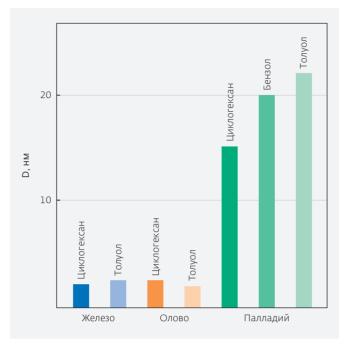
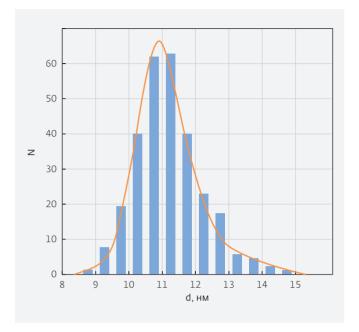


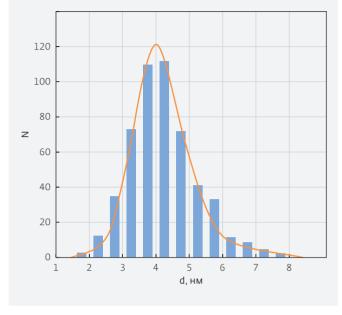
Рис.1. Влияние продолжительности работы искрового генератора на концентрацию частиц нанодисперсного кобальта

конденсационным методом, зависят от многих факторов: продолжительности работы искрового генератора, физической природы вещества, характера дисперсионной среды (жидкой фазы), электрических параметров процесса – прежде всего частоты и напряжения переменного электрического тока (табл., рис.1–2).

ПОЛУЧЕНИЕ SIC С ИСПОЛЬЗОВАНИЕМ ЭКМ

Для исследования возможности синтеза SiC электроконденсационным методом использовали два электрода в виде стержней: из кремния (анод) диаметром 5 мм и углерода (катод) диаметром 20 мм. Расположенные соосно электроды монтировали на специальном устройстве (реакторе) и помещали в воду. Зазор между электродами составлял 1-2 мм. Через жидкую фазу постоянно барботировали аргон. Напряжение разряда и сила тока составляли, соответственно, 47 В и 10 А. В процессе синтеза прозрачность раствора уменьшалась. После непрерывного разряда в течение 20 мин суспензия приобрела темно-коричневый цвет, часть образовавшегося порошка SiC коагулировала на дно реактора. Во время дугового разряда масса электродов уменьшилась, что свидетельствовало об электроэрозионном характере процесса.




Рис.2. Влияние дисперсионной среды (жидкой фазы) на размер частиц нанодисперсных металлов

Измерения с помощью электронного микроскопа Hitachi H-8100 показали, что средний размер полученных наночастиц SiC составил 11,0±1,5 нм (рис.3). На форму и концентрацию частиц SiC оказывают влияние многие факторы, в том числе состав жидкой фазы и материал электродов.

ПОЛУЧЕНИЕ КРЕМНИЯ И УГЛЕРОДА С ИСПОЛЬЗОВАНИЕМ ЭКМ

Одномерные Si- и/или C-содержащие наноструктуры в виде нанопроводов, наностержней и нанотрубок могут найти применение в качестве наноразмерных оптоэлектронных устройств [12–16]. Синтез полупроводниковых кремниевых нанопроводов – перспективное направление в наноэлектронике. Известные методы синтеза подобных

Рис.3. Распределение наночастиц SiC по размерам

Рис.4. Распределение наночастиц Si по размерам

структур с использованием химического осаждения из паровой фазы, молекулярно-лучевой эпитаксии и др. требуют применения высокого вакуума, дорогостоящего оборудования, специальных устройств для получения высокой температуры (лазера), а также проведения процесса при наличии катализаторов.

Альтернативным способом получения Si- и/или C-содержащих наноструктур служит электрический разряд в жидкости – электроконденсационный метод. В отличие от перечисленных выше, этот метод не предусматривает применения металлических катализаторов, взрывоопасных или агрессивных газов и дорогостоящего специального оборудования. С помощью ЭКМ могут быть синтезированы углеродные "луковицы" и углеродные нанотрубки.

Для исследования электроконденсационного метода синтеза кремниевых наноструктур использовали два электрода в виде стержней диаметром 5 мм (анод) и 20 мм (катод), которые погружали в воду. Через воду непрерывно барботировали аргон. Для поддержания постоянного разряда в воде катод и анод были размещены на расстоянии в 1 мм; напряжение разряда и сила тока составили, соответственно, 25 В и 10 А. Во время дугового разряда наблюдались голубоватое свечение и образование пузырей вокруг электродов. Пузырьки группировались около пятна дуги и направлялись к поверхности воды. В процессе синтеза прозрачность раствора уменьшалась: после непрерывного разряда

в течение 10 мин суспензия становилась бледножелтой, через час - коричневой, и часть Si-порошка осаждалась на дно реактора. Во время дугового разряда масса электродов уменьшалась, что визуально подтверждалось шероховатостью, возникающей на поверхности электродов.

Измерения показали, что средний размер полученных наночастиц Si составил 4,0±1,2 нм (рис.4). Путем рентгенофазового анализа было установлено, что частицы Si представляют собой алмазоподобный кристаллический кремний, плоскости кристалла которого соответствуют ориентации {111}, {220} и {311}. Помимо наночастиц кремния при электродуговом разряде между двумя Si-электродами, погруженными в воду, в жидкой фазе были обнаружены Si-нанопровода диаметром в несколько десятков ангстрем. Si-нанопровода образуются в газовом пузыре по мере действия электрического поля, а их рост происходит при участии поверхности {111}. Частицы кремния, напротив, образуются в областях, где влияние электрического поля незначительно. Наночастицы и нанопровода Si, нанесенные на поверхность образцов любой формы с помощью гетерокоагуляции, позволяют обеспечивать заданные свойства соответствующим изделиям.

0.00

Результаты исследований показывают, что электроконденсационный метод может стать основой новой эффективной технологии получения наночастиц кремния, углерода и карбида кремния. Дальнейшие

работы по оптимизации режимов этого процесса – параметров электрического тока, состава жидкой фазы, структуры и формы электродов, режима перемешивания в межэлектродном пространстве и др. – позволят усовершенствовать метод и успешно использовать его для синтеза материалов, широко применяемых в электронной промышленности.

Электроконденсационный метод позволяет отказаться от применения металлических катализаторов, взрывоопасных или агрессивных газов и дорогостоящего специального оборудования. Поэтому этот метод не только оптимизирует технологию получения наночастиц кремния, но и значительно сокращает затраты, связанные с данным типом производства, а также делает его более экологичным и безопасным.

ЛИТЕРАТУРА

- 1. **Сорокин В.** Материалы и элементы электронной техники. Том 1. Проводники, полупроводники, диэлектрики: учебник для студентов высших учебных заведений. М.: Издательский центр "Академия", 2006, с. 240–245.
- 2. **Карелин В., Карелин А., Шпунт Л. и др.** Патент РФ № 2071938 С1 МПК6 С01В 31/36, опубл. 20.01.1997. Способ получения карбида кремния. НПО "Радиевый институт им. В.Г.Хлопина".
- 3. **Иванов Л., Черников Г.** Патент РФ № 2087416 C1 МПК6 C01B 31/36, опубл. 20.08.1997. Способ получения слоев карбида кремния.
- 4. **Тимощук Т.** Патент РФ № 2240979 С2 МПК7 С01В 31/36 опубл. 27.11.2004. Способ получения карбида кремния. Институт химии твердого тела Уральского отделения РАН.
- 5. **Ковалевский В., Сафронов А.** Патент РФ № 2328444 C2 МПК7 C01В 31/36 опубл. 10.12.2007. Способ получения нановолокнистого карбида кремния. ООО "Шунгитон".
- 6. Викулин В., Шкарупа И., Гурина Т. и др. Патент РФ № 2299177 С1 МПК7 С01В 31/36 опубл. 07.10.2005. Способ получения порошка карбида кремния из рисовой шелухи. ФГУП "Обнинское НПП "Технология".
- Викулин В., Шкарупа И., Гурина Т. и др. Патент РФ № 2296102 С1 МПК7 С01В 31/36 опубл. 27.03.2007. Способ получения порошка карбида кремния из рисовой шелухи. ФГУП "Обнинское НПП "Технология".
- Туктамышев И., Селезнев А., Калинин Ю. и др. Патент РФ № 2163563 МПК7 С01В 31/36 опубл. 27.02.2001. Способ получения карбида кремния. ЗАО НПП "Шунгитовые технологии".
- Севастьянов В., Павелко Р., Антипов А. и др. Патент РФ № 2393112 С1 МПК7 С01В 31/36 опубл.

- 27.06.2010. Способ получения нановолокон карбида кремния. ИОНХ РАН.
- 10. **Артемов А., Жильцов В., Крутяков Ю. и др.** Получение наноразмерных металлов электрическим разрядом в жидкости. Вопросы атомной науки и техники, 2008, № 4, с. 150–154.
- 11. **Артемов А., Жильцов В., Крутяков Ю. и др.** Патент РФ № 2437741 С1 МПК7 В82В 3/00 опубл. 27.12.2011. Способ получения нанодисперсных металлов в жидкой фазе. НИЦ "Курчатовский институт".
- 12. **Wu Y, Xiang J., Yang C., Lu W., Lieber C.** Nature, 2004, 430, 61–65.
- 13. Carter J., Qu Y., Orter R., Hoang L., Masiel D., Guo T. Chem. Comm., 2005, 2274-22-76.
- 14. **Gautan U., Rao C., Mater J.** Chem., 2004, 14, 2530-2535.
- Hu J., Bando Y., Liu Z., Zhan J., Golberg D.,
 Sekiguchi T. Angew. Chem., Int. Ed., 2004, 43, 63-66.
- 16. **Lin S-M, Mikihiro K., Sato S., Kimura K.** Chem. Commun, 2005, 4690–4692.