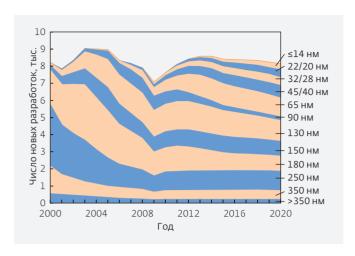
COBPEMEHHЫE CAПР SYNOPSYS -

НОВЫЕ ВОЗМОЖНОСТИ ДЛЯ ТРАДИЦИОННЫХ ТЕХНОЛОГИЙ

Д.Радченко, главный инженер-консультант по САПР, Synopsys Dmitry.Radchenko@synopsys.com

Сегодня взгляды многих разработчиков передовых системна-кристалле (СнК) устремлены на технологические процессы со все меньшими топологическими нормами. Уже стали реальностью технологии уровня 20/22 нм, осваивается уровень 14 нм, микроэлектронный мир вплотную подошел к разрешению в 10 нм, еще несколько лет назад считавшемуся непреодолимым в силу фундаментальных ограничений. Может сложиться впечатление, что разработка и изготовление передовых ИС на основе полупроводниковых технологий уровня 40/65 нм и выше сегодня уже неактуальна. Однако на практике дело обстоит не так – для очень многих задач эти технологии не только достаточны, но и оптимальны. Но для того, чтобы в полной мере раскрыть потенциал этих технологий, решать на их основе задачи создания современных СнК, необходимы самые передовые методологии и системы автоматизированного проектирования (САПР). В частности, методологии и инструменты проектирования, созданные компанией Synopsys для применения в новейших технологиях, открывают новые возможности и в рамках более традиционных технологических процессов.


ТРАДИЦИОННЫЕ ТЕХНОЛОГИИ: ШАНС НА ДОЛГУЮ ЖИЗНЬ

Каждый технологический процесс проходит определенные стадии жизненного цикла: разработка, внедрение, рост, достижение максимального уровня развития, спад и постепенный уход с рынка. Анализ жизненных циклов позволяет увидеть, на каких технологических уровнях сегодня выполняется наибольшее число новых разработок интегральных схем (ИС).

Компания IBS провела исследование, посвященное технологиям, используемым в новых разработках ИС и СнК с 2000 по 2015 год, и сделала прогноз развития полупроводниковых технологий на период до 2020 года. Согласно результатам этого исследования, на сегодняшний день до 90% всех новых разработок выполняется с применением проектных норм 180, 150, 130 и 65 нм (рис.1). Процессы с нормами 45/40, 32 и 28 нм находятся на стадии роста. Новейшие процессы с проектными нормами 22/20 нм и 14 нм

переживают этап начального внедрения в серийное производство.

Следует отметить, что при переходе на технологии с проектными нормами менее 20 нм компании-разработчики микросхем столкнулись с новой тенденцией. Если до этого с появлением каждого нового технологического уровня росла производительность ИС и одновременно снижалась удельная стоимость вентиля, то при достижении уровня 20 нм дальнейшее уменьшение себестоимости приостановилось (рис.2). Это связано с существенным ростом сложности производства. В частности, для фотолитографии с разрешением 20 нм и менее необходимо использовать технологию двойного экспонирования, что требует дополнительных фотошаблонов. В результате, у многих компаний возникли трудности с переходом на технологический уровень ниже 20 нм. Соответственно, замедлился рост числа новых разработок на базе 22/20/14-нм технологий (см. рис.1).

Рис.1. Распределение новых разработок по используемым технологическим процессам с 2000 по 2020 год

Многие отраслевые аналитики прогнозируют, что в результате снижения темпов внедрения новых процессов, технологии с проектными нормами 130/90 и 65/40-нм будут иметь длительный жизненный цикл. По всей видимости, такая же тенденция позднее будет наблюдаться и в отношении 32/28-нм процессов. Вместе с тем, требования потребителей к изделиям микроэлектроники продолжают расти. Как их обеспечить?

До недавнего времени создание перспективных решений в области микроэлектроники означало проектирование микросхем только под новейшие технологические процессы. Отчасти эта тенденция сохраняется, прежде всего, для наиболее массовых приложений, требующих наивысшей производительности и минимального энергопотребления. Яркий тому пример – комплекты ИС для мобильных устройств или персональных компьютеров.

В то же время, сегодня большие перспективы открываются и при разработках под технологические

Рис.2. Стоимость вентиля для разных технологических процессов

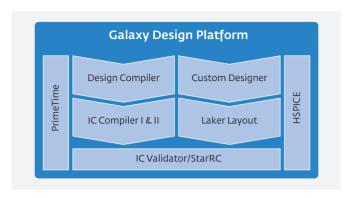
процессы, которые уже некоторое время присутствуют на рынке. Технологические процессы с проектными нормами 40/65-нм достигли сегодня высокого уровня качества и выхода годных СБИС, внедрены на множестве полупроводниковых производств, поэтому в рамках данной статьи будем называть такие технологии "традиционными". Их применение для перспективных разработок открывает сегодня массу перспектив.

Ведь кроме технологического процесса, понятие "перспективной разработки" включает в себя и другие составляющие – например, схемотехнические решения, оптимальность топологии, комбинацию используемых IP-блоков и т.п. Так, на основе хорошо отработанной 65-нм технологии можно создать чип, сочетающий в себе самые передовые характеристики и высокий уровень надежности. Причем стоимость его будет значительно ниже, чем у функционально аналогичного изделия, изготовленного по 22-нм процессу.

Спектр приложений, в которых используют ИС на базе традиционных технологий, весьма широк – от автомобильных и медицинских систем до Интернета вещей. При всем различии требований к таким системам, ИС для данных приложений строятся на основе множества общих принципов. Как правило, эти СБИС могут содержать один или несколько процессоров, блоки обработки и анализа сигналов, преобразователи сигналов, аналоговые интерфейсные ІР-блоки, энергонезависимую память и, возможно, МЭМС-датчики. Во многих СнК используются блоки цифровой обработки сигналов, например в приложениях для глобальных навигационных спутниковых систем, обработки видео или повышения качества звука в слуховых аппаратах. Причем микросхемы для управления двигателем, коробкой передач, подвеской, тормозной системой и другими агрегатами автомобиля работают в условиях вибрации и повышенных температур, а напряжение питания может изменяться в пределах от одного до нескольких десятков вольт. Общей задачей при проектировании таких систем является уменьшение занимаемой кристаллом площади и повышение его энергоэффективности, что позволяет увеличить срок службы батарей в портативных устройствах или снизить нагрузку на аккумулятор в автомобильных приложениях.

Достижение высоких характеристик СБИС возможно только при использовании наиболее совершенных методологий и инструментов проектирования. Прогресс в микроэлектронике затрагивает не только технологии производства интегральных схем. Инструменты проектирования совершенствуются

одновременно с ним и зачастую опережая его. Современные САПР позволяют спроектировать изделие, характеристики которого считались недостижимыми еще несколько лет назад, в рамках той же самой технологии. Сегодня на рынке доступны методологии и инструменты проектирования, разработанные для новейших технологических процессов, но позволяющие достичь нового качества результатов проектирования и для традиционных процессов.


По сути, применение современных средств САПР для создания ИС с проектными нормами 40/65-нм и более позволяет достичь ряда характеристик, сопоставимых с характеристиками ИС с меньшими проектными нормами. При этом затраты на производство 65-нм кристаллов будут значительно ниже затрат на запуск производства СБИС по 22-им процессу.

Таким образом, для ИС на основе традиционной технологии ключевым фактором становится уровень проектных решений. Именно он во многом обеспечивает конкурентные преимущества создаваемого изделия. Поэтому разработчики таких ИС не в меньшей, а иногда и в большей степени нуждаются в самых современных средствах САПР, позволяющих максимально использовать все возможности технологического процесса.

ИНСТРУМЕНТЫ ПРОЕКТИРОВАНИЯ ИС ДЛЯ ПЕРЕДОВЫХ И ТРАДИЦИОННЫХ ТЕХНОЛОГИЙ. ПЛАТФОРМА GALAXY

Прежде всего, решающее значение имеет интеграция инструментов проектирования в связанный единой методологией маршрут, построенный на единой платформе. Возможность проводить детальный анализ и оптимизацию различных параметров проекта в рамках интегрированного процесса проектирования помогает обнаружить потенциальные проблемы на ранних этапах разработки ИС. Например, все задачи проектирования могут быть решены в рамках платформы проектирования Galaxy от компании Synopsys.

Платформа Calaxy (Calaxy Design Platform) - это комплекс инструментов, интегрированных в единую среду проектирования. Они служат как для создания СБИС на основе библиотечных элементов, так и для разработки полностью заказных схем. Galaxy позволяет проводить разработку аналоговых, цифровых или смешанных схем от уровня регистровых передач (RTL) или уровня принципиальной электрической схемы до уровня топологии GDSII*. Маршрут

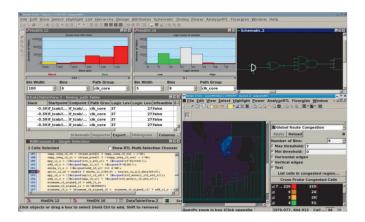


Рис.3. Состав платформы разработки Galaxy

проектирования на базе платформы Galaxy включает в себя логический синтез вентильного представления, разработку и верификацию топологии, экстракцию паразитных параметров, а также временной, статический и формальный анализ проектов. Для заказных блоков предусмотрена возможность создания принципиальной электрической схемы и топологии на уровне транзисторов, моделирование схемы и экстракцию паразитных параметров. В состав платформы Galaxy входят такие инструменты, как Design Compiler, IC Compiler, IC Validator, Galaxy Custom Router, Custom Designer, HSPICE, Star-RC, PrimeTime и др. (рис.3).

Design Compiler (DC) - это инструмент синтеза логических схем, оптимизации энергопотребления и занимаемой площади. Он также позволяет интегрировать в схему специальные логические элементы для формирования путей сканирования, необходимых при производственном контроле годности ИС. Для проектирования топологии используется инструмент IC Compiler, обеспечивающий планировку кристалла, размещение элементов и блоков, синтез деревьев тактовых синхросигналов, оптимизацию целого ряда физических параметров, направленную на повышение уровня выхода годных ИС и т. д. За анализ временных характеристик и целостности сигналов отвечает инструмент PrimeTime. В состав платформы Galaxy входит также инструмент Custom Designer, который используется для проектирования заказных решений, в том числе - для проектирования электрических принципиальных схем (Custom Designer Schematic Editor) и топологии (Custom Designer Layout Editor). Он тесно интегрирован с инструментом проектирования топологии ІС Compiler и средствами схемотехнического моделирования HSPICE. Физическую верификацию проекта и экстракцию паразитных RC-параметров можно выполнять с помощью таких инструментов, как ІС Validator и StarRC. Во всех инструментах реализованы

GDSII (Graphic Database System II) – формат файлов баз данных, который используется для обмена данными по топологии интегральных схем между различными САПР или для создания фотошаблонов.

Рис.4. Перекрестный анализ различных представлений проекта в DC Graphical

наиболее современные методы и алгоритмы проектирования, которые позволяют создать оптимизированные решения для использования в изделиях на базе традиционных технологий. Рассмотрим лишь некоторые из них.

ОПТИМИЗАЦИЯ ПЛОЩАДИ ИС

При проектировании ИС, наряду с достижением требуемого быстродействия, большое значение имеет минимизация площади кристалла. Это необходимо для обеспечения высокого уровня выхода годных схем и снижения их себестоимости. Соответственно, инструменты САПР должны обеспечить оптимизацию размещения блоков и эффективное использование трассировочных ресурсов кристалла. Инструмент Design Compiler Graphical (DC Graphical) в процессе логического синтеза позволяет проводить структурную оптимизацию логической схемы для уменьшения плотности трассировки, чтобы более эффективно использовать доступную площадь кристалла. Это важно, поскольку на последующем этапе при размещении и трассировке компонентов, снижение плотности трассировки может быть затруднено или окажется невозможно.

DC Graphical определяет участки схемы с высокой плотностью трассировки, которые могли возникнуть как по причине неоптимальной компоновки кристалла, так и в силу громоздкой структуры логических элементов с множеством межсоединений (причиной последнего, как правило, является структура исходного RTL-описания).

В инструменте DC Graphical имеется возможность перекрестного анализа различных представлений проекта (топологического, списка цепей и RTL). Можно проследить выбранную цепь на электрической схеме, в топологии и в RTL-описании и проанализировать

параметры данной цепи (рис.4). Это позволяет, в том числе, идентифицировать ту часть RTL-описания проекта, которая является источником повышенной плотности трассировки, и при необходимости внести в нее изменения. Однако в большинстве случаев делать этого не нужно, так как в DC Graphical реализован алгоритм, который автоматически выбирает оптимальные с точки зрения трассировки конфигурации логических элементов и структур их построения и генерирует список цепей с уменьшенной плотностью трассировки (рис.5).

Kpome того, DC Graphical идентифицирует совместно используемые логические схемы и реструктурирует их так, чтобы минимизировать

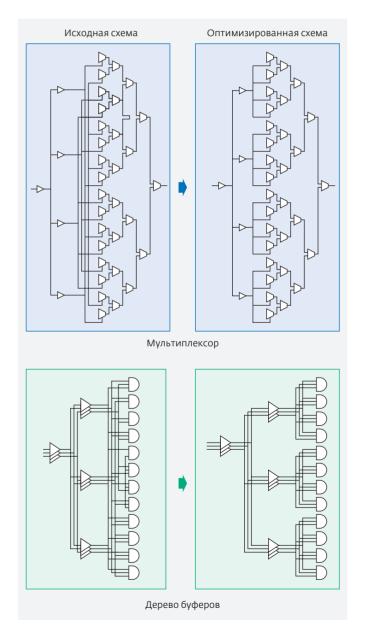
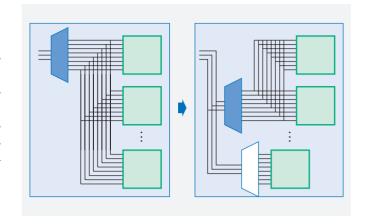



Рис.5. Оптимизация логических схем в DC Graphical

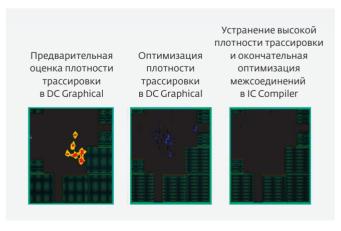


Рис.6. Пример реструктурирования дешифратора адреса

требуемые ресурсы трассировки. Данный алгоритм позволяет решить проблему трассировки сигналов, которые используются по всему блоку или даже кристаллу, например адресных линий дешифратора (рис.6). Алгоритмы, реализованные в DC Graphical, позволяют вносить изменения в список цепей с минимальным влиянием на параметры быстродействия, уменьшая занимаемую схемой площадь и ее энергопотребление. DC Graphical передает все результаты выполненной оптимизации и сформированное размещение элементов в инструмент IC Compiler, который окончательно оптимизирует межсоединения в процессе проектирования топологии кристалла (рис.7).

СНИЖЕНИЕ ЭНЕРГОПОТРЕБЛЕНИЯ

Кроме уменьшения площади, важной задачей является снижение энергопотребления кристалла.

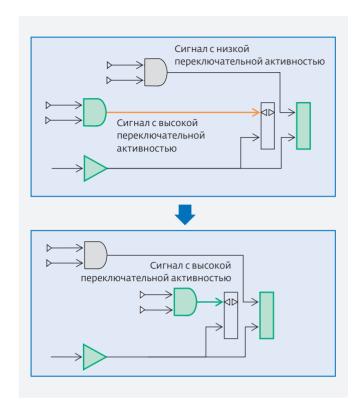


Рис.7. Совместная работа DC Graphical и IC Compiler позволяет устранить повышенную плотность трассировки

Для этого в платформе Galaxy применяются специальные технологии и алгоритмы, в том числе усовершенствованные алгоритмы управления тактовыми сигналами, оптимальное использование логических элементов с различными пороговыми напряжениями, поддержка отключаемых доменов и доменов с различными напряжениями питания, ряд других методов энергосбережения.

Для снижения динамической мощности на вентильном уровне в процессе логического синтеза могут быть введены специальные элементы управления тактовыми сигналами. Они позволяют исключить работу определенных частей логических схем в холостом режиме (например, когда не нужно менять их логические состояния в каждом рабочем цикле). Кроме того, в некритичных по быстродействию цепях возможна замена более мощных логических элементов на менее мошные.

Для снижения динамической мощности используется также механизм минимизации длины так называемых "активных" проводников, по которым передаются сигналы с высокой переключательной активностью (рис.8). Это позволяет не только уменьшить динамическую мощность,

Рис.8. Минимизация длины проводников сигналов с высокой переключательной активностью

но и улучшить точность оценки энергопотребления в процессе синтеза.

Для снижения статического энергопотребления (токов утечки) в инструментах DC Graphical и IC Compiler реализован алгоритм, благодаря которому минимизировано использование логических элементов с низким пороговым напряжением. Согласно этому алгоритму при синтезе цепей по умолчанию используются логические элементы с высоким пороговым напряжением, а более быстрые, но обладающие более высокими токами утечки элементы с низким пороговым напряжением, используются только в том случае, когда нет другой возможности обеспечить требования по быстродействию.

Кроме того, при помощи спецификации в формате UPF (IEEE 1801) предусмотрена возможность введения специальных элементов управления электропитанием всего кристалла. Разработчики могут определять на кристалле блоки (домены) с различными величинами напряжения питания и разрешенные состояния в этих доменах (определять правила для выключения, включения, сохранения состояния системы). Все это автоматически учитывается инструментом DC Graphical при логическом синтезе и инструментом IC Compiler при создании планировки и топологии кристалла.

ДОПОЛНИТЕЛЬНАЯ ТОПОЛОГИЧЕСКАЯ ОПТИМИЗАЦИЯ

Еще одна возможность, которой обладают инструменты платформы Galaxy, - умение учитывать различные значения сопротивлений слоев металлизации при разводке кристаллов. В платформе Galaxy применяется технология Layer Optimization, которая учитывает различное сопротивление верхних и нижних слоев металлизации в процессах оптимизации логической схемы, а также глобальной и детальной трассировки. Этот алгоритм позволяет разводить критичные с точки зрения быстродействия цепи в верхних слоях металлизации с меньшим сопротивлением.

Кроме того, DC Graphical оценивает величину сопротивления переходных отверстий, чтобы повысить точность расчета быстродействия схемы и обеспечить лучшую корреляцию результатов логического синтеза и пост-топологического анализа (с помощью PrimeTime). Последнее достигается за счет использования обоими инструментами одинаковых алгоритмов размещения элементов и глобальной трассировки (Zroute). Предварительное размещение элементов, полученное в результате логического синтеза в DC

Graphical, передается в IC Compiler для дальнейшего проектирования топологии.

Часто даже в полностью цифровых системах возникает необходимость выровнять небольшие группы проводников по длине и сопротивлению, например при разводке сигналов от выходных буферов DDR до макро-ячеек приема/передачи данных и управления протоколом обмена. Иногда нужно вручную создать фрагмент топологии с определенным взаиморасположением нескольких ячеек и проводников и повторить (клонировать) этот фрагмент несколько раз. Для решения подобных задач удобно использовать инструмент Galaxy Custom Router, тесно интегрированный с IC Compiler и имеющий с ним общую базу данных. Galaxy Custom Router позволяет быстро и удобно провести необходимую работу с топологией, а затем сохранить этот проект для дальнейшего проектирования топологии в инструменте IC Compiler.

Мы рассмотрели лишь некоторые возможности инструментов платформы Galaxy, позволяющие добиться высоких результатов и качества проектирования. Рынок микроэлектронных устройств, которые производятся с использованием традиционных технологий, сегодня растет. И современные инструменты САПР позволяют существенно расширить возможности ИС, созданных на основе этих технологий. Это открывает перед разработчиками новые перспективы, поскольку широкий спектр изделий теперь можно спроектировать и изготовить не только на основе самых передовых технологических процессов, но и с использованием гораздо более доступных традиционных технологий, добиваясь нужного результата на этапе проектирования с помощью CAΠP Synopsys.

ЛИТЕРАТУРА

- **Bollar Mark.** The new landscape of advanced design. [Электронный ресурс] URL:www.techdesignforums.com.
- **Bollar Mark.** Are advanced designs only possible at emerging process nodes? [Электронный ресурс] URL:www.techdesignforums.com.
- Casale-Rossi Marco. Automotive ICs drive advanced design at established nodes. [Электронный ресурс] URL:www.techdesignforums.com.
- Collins Luke. Synopsys claims latest Design Compiler shrinks existing netlist area, leakage up to 10%. [Электронный ресурс] URL:www.techdesignforums.com.