НОВЫЕ ВОЗМОЖНОСТИ ALTIUM DESIGNER 17.1 ПОМОГАЮТ УСКОРИТЬ РАБОТУ НАД ПРОЕКТОМ

Е.Чириков¹

УДК 621.3.049 ВАК 05.27.00

Компании-разработчики САПР постоянно расширяют функциональные возможности инструментов проектирования. Усилия направлены в первую очередь на то, чтобы помочь разработчику устройства сконцентрироваться на самом проекте. а не на процессе проектирования. В первом номере журнала "ЭЛЕКТРОНИКА: Наука, Технология, Бизнес" за 2017 год мы ознакомили читателей с дополнительными возможностями очередной версии комплексной системы проектирования Altium Designer 17. В обновленной версии этого популярного пакета – Altium Designer 17.1 – были устранены проблемы и ошибки, которые пользователи обсуждали в сообществе AltiumLive и о которых сообщали через специальный сервис BugCrunch. Кроме того, в Altium Designer 17.1 были реализованы функции, направленные на оптимизацию процесса создания проектной документации и в целом на ускорение работы над проектом. Рассмотрим наиболее важные усовершенствования, которые вошли в обновленную версию программного продукта.

УЛУЧШЕНИЕ ТЕХНОЛОГИЙ ActiveRoute И Glossing

Появившийся в Altium Designer 17 инструмент ActiveRoute реализует новую технологию трассировки, представляющую собой автоматизированную интерактивную маршрутизацию, которая обеспечивает эффективный алгоритм прокладки треков (проводников). Достаточно выбрать группу соединений, и ActiveRoute в считанные секунды создаст высококачественную трассировку выбранных цепей, тем самым экономя немало времени, которое тратит пользователь на их маршрутизацию вручную. В ActiveRoute реализована поддержка современных методов проектирования, в том числе работа

¹ НПП "Родник", технический эксперт, chirikov@rodnik.ru.

с дифференциальными парами и соблюдение правил проектирования в пределах "комнат" (Room).

В обновлении Altium Designer 17.1 технология ActiveRoute была улучшена благодаря ряду полезных функций, в частности, таких как:

- дополнительная опция выбора создаваемого маршрута;
- более совершенная функция Route Guide, которая позволяет разработчику создавать предпочтительный путь для трассировки выбранного набора соединений, чтобы поддерживать максимальную ширину, в пять раз больше ширины, необходимой для маршрута, учитывая зазор между соединениями;
- более подробная информация, выводимая на панель сообщений Messages (рис.1): теперь отчет содержит

Messages .						٠
Class	Document	Source	Message	Time	Date	No
ActiveRoute	DiffPairTest.PcbDoc	ArtiveRoute	Time : 00:04	2.34.54 PM	23-Mar-17	1
Details						
ActiveRoute to	tal time : 00:04					
- initial setup : (0:00					
 ActiveRoute : 4 	0:02					
 Net analyzer : 	00:01					
 Actarelloute sa 	ssion log :					
Pre-processing	time 0.219 s					
 PASS 1 started 						
 Completion ra 	te: 65.6% - Conflicts 8 - PASS 2 (darled				
Completion ra	te: 90.9% - Conflicts 2 - PASS 3 :	started				
Completion ra	te: 100.0% - Conflicts 0					
- 100.0% - Post-	processing Step 1 layer TopLaye	#				
- 100.0% - Post-	processing Step 1 layer MidLaye	HZ				
100.0% - Port-	processing shep 1 layer Bottom	Layer				
100.0% - Pest-	processing Step 1 layer TopLaye	T				
100.0% - PENT-	processing scep 2 layer topulye	f				
100.0% - POST-	processing Step 1 layer topLaye	1				
nouting runs	F12					

Рис.1. Панель Messages

данные о том, какие действия выполнил инструмент ActiveRoute, какие не выполнил и почему.

В последнем обновлении Altium Designer улучшена технология сглаживания дорожек Glossing, которая позволяет оптимально расположить выбранные проводники. Треки, созданные с помощью инструмента ActiveRoute, теперь сглаживаются автоматически. Инструмент Glossing тщательно анализирует выбранные маршруты, выравнивает и сокращает их.

В Altium Designer 17.1 были также реализованы следующие улучшения технологии Glossing:

- расширены возможности выбора части трека для сглаживания – можно выбрать контактную площадку или проходное отверстие для обозначения конца нужной части трека;
- технология Glossing учитывает функцию Route Guide сглаживание проводников теперь можно выполнить в пределах указанной области;
- модернизирован алгоритм сглаживания с учетом правил в разделе SMT (подключение к контактным SMD-площадкам);
- при сглаживании дифференциальных пар инструмент Glossing будет создавать предпочтительный (Preferred) зазор в тех местах, где это допустимо;
- инструмент Glossing поддерживает перемычки и обрабатывает треки Subnet Jumper как фиксированные;
- реализована поддержка правил маршрутизации Clearance и Diff Pair в пределах "комнат" (Room).

Рис.2. Изометрический вид платы

НОВАЯ ФУНКЦИЯ Retrace

В последней версии Altium Designer 17.1 введена новая команда Retrace (выбирается из пункта меню Route \rightarrow Retrace Selected), которая работает на основе расширенных возможностей технологии Glossina. С помощью команды Retrace пользователь может повторно применить предпочтительные требования к ширине и зазорам для выбранного маршрута и обновить его в соответствии с текущими правилами. С помощью этой команды можно легко уменьшить или увеличить ширину выбранного набора цепей или ширину и зазор между дифференциальными парами. Если новые

значения предпочтительных требований к ширине и зазорам больше текущих значений этих параметров, и для разводки потребуется больше места, то команда Retrace не сможет смещать окружающие объекты. В этом случае обновление правил применяется только к тем сегментам маршрута цепей или дифференциальных пар, которые не создают нарушений.

В целом работа функций Retrace и Glossing схожа, но имеются и различия:

- Glossing сохраняет ширину треков, Retrace изменяет ее на предпочтительную (Preferred) величину;
- Glossing, насколько возможно, сокращает длину и уменьшает количество углов проводников, что часто приводит к серьезному изменению разводки, Retrace оставляет первоначальное направление проводника, изменяя только его параметры.

СИСТЕМЫ ПРОЕКТИРОВАНИЯ

Для выделения маршрута, параметры которого необходимо изменить с помощью команды Retrace, применяют аналогичные методы, что и при работе с Glossing. Если для реализации установленных значений ширины и зазора недостаточно места, то команда Retrace использует максимально возможные параметры, чтобы заполнить свободное пространство.

УЛУЧШЕНИЯ В РЕДАКТОРЕ Draftsman

В обновлении Altium Designer 17.1 представлен ряд новых функций и улучшений для редактора чертежей Draftsman. Обновления включают в себя возможность обозначения шероховатости и допусков в соответствии с ГОСТ, новый изометрический вид платы, возможность разделить спецификацию на несколько таблиц и многое другое.

Изометрический вид

Наряду с другими видами чертежей, которые могут быть автоматически построены в Draftsman, теперь доступен изометрический вид (рис.2). Изометрическая проекция для текущей печатной платы размещается на чертеже с помощью команды Place → Board Isometric View. Свойства и параметры для размещенного изометрического вида можно отредактировать из панели свойств чертежа Properties, которая автоматически изменится на режим Board Isometric View, когда соответствующий вид будет выбран в рабочей области.

В раскрывающемся меню View \rightarrow Face Side предусмотрена возможность выбора стороны, относительно которой будет отображаться проекционный вид.

Разделение таблицы Bill of Materials

Перечень материалов (Bill of Materials – BOM) для сложных проектов печатных плат имеет большое количество позиций, которые трудно отобразить в виде таблицы, помещающейся в размеры листа. Вместо того чтобы прибегать к масштабированию шрифтов и таблиц или созданию нескольких пользовательских таблиц, в панели Properties появилась функция Split BOM, которая позволяет отображать таблицу ВОМ на нескольких страницах (рис.3).

Обозначение шероховатости

Редактор чертежей предоставляет возможность размещать графические символы шероховатости и связанные с ними параметры, которые соответствуют международному стандарту ISO 1302:2002 (рис.4). Указанный стандарт определяет правила обозначения текстуры поверхности на чертежах на основе специальных символов, которые описывают разрешенный материал поверхности изделия, в данном случае печатной платы.

Используемые для обозначения графические символы сопровождаются специальными текстовыми кодами, определенными стандартом ISO, которые добавляются

overlies Surface Finish	* .	C C	e al /		
View	8	a de la	c_b\		
Symbol Any Ma	nufacturing Process Fermitted	eAto			
Symbol Line Style	Dold, Nerrad	2000-2 20000	000000		A
Extension Line Style	(Sold, Nomal)	2000 0 0000 0 0000			
Extension Lines Gap 0.5292#	NI NI		ST BANK		
Extension Lines Offset 0.52924	-	Company and the second	-n în		
Arriw Style	- E				
With leader				AD	
Value		Contra a	40 40		
First Requirement		The ALLON AND			
Second Requirement					
Manufacturing Method	0		00000 - 84		
Mathining Allowance C					
Surface Lag And Orientation	ripendicular v	022277728496464	0000000000		Δ
Allow Different Requirements		1	2-4		<u></u>
Font	9				
Use Document Font				L	
Text Font Anial 12pt				FOCT 2.308-79	, c. 7
Test Color					
	10				
				Drea E Datum	Frating Francisco

Рис.4. Обозначение шероховатости поверхности платы

Рис.5. Datum Feature – буквенное обозначение поверхности, с которой связан допуск

Ø0,2 ØR0,1 <u>− T0,2</u> − T/20,1						
0,10,1/1000,1/200×100						
FOCT 2,308-79						
● Ø0,2 ● R0,1 = T0,2 = T/2 0,1						
- 0,1 - 0,1/100 0,1/200x100						
AD						

Рис.6. Feature Control Frame – обозначение допуска

через панель свойства чертежа Properties, когда выбран пункт Surface Finish.

Обозначение допусков

Теперь в Draftsman включена возможность размещения и настройки символов допусков промышленного стандарта, которые определяют производственные свойства объектов, представленных на чертеже. Элементы обозначения допусков, которые могут быть добавлены к документам Draftsman, взяты из стандартов, разработанных Американским обществом инженеров-механиков (ASME), в частности стандарта размеров и допусков ASME Y14.5-2009.

Обозначение допусков в Draftsman реализуется с помощью двух новых типов объектов: символов Datum Feature и рамок Feature Control Frame.

Символы Datum Feature – это идентификационные объекты в соответствии с ГОСТ 2.308 (рис.5), которые на чертеже могут быть прикреплены к линии, точке или оси физического объекта, например кромки платы, компонента или отверстия.

Рамки Feature Control Frame – это информационные объекты обозначения данных о допусках формы и расположения поверхности. Обозначение может состоять из двух и более частей (рис.6), в которые помещаются:

- в первой знак допуска по таблице в соответствии с ГОСТ (рис.7);
- во второй-числовое значение допуска в миллиметрах;
- в третьей и последующих буквенное обозначение базы (баз) или буквенное обозначение поверхности, с которой связан допуск расположения.

Кроме того, в Draftsman были расширены функции работы с многовариантными проектами и реализовано ручное расположение обозначений Designator.

ДРУГИЕ ИЗМЕНЕНИЯ B ALTIUM DESIGNER 17.1

Среди других нововведений Altium Designer 17.1 следует отметить изменения в выборочном отказе от проверки правил проектирования (Design Rule Check – DRC):

Допуск	FOCT 2.308-79	AD
прямолинейности		
плоскостности		0
круглости	\bigcirc	0
цилиндричности	$\not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	N
параллельности	//	//
перпендикулярности	\perp	
наклона	\angle	~
соосности	\bigcirc	0
симметричности	<u> </u>	=
позиционный	\	
радиального биения, торцевого биения, биения в заданном направлении	/	
полного радиального биения полного торцевого биения	1	11
формы заданного профиля	\bigcirc	\Box
формы заданной поверхности	\bigcirc	

Рис.7. Знаки обозначения допуска

теперь проверка DRC может быть отменена из панелей PCB Rules And Violations и Messages. Можно зарегистрировать также информацию о том, кто, почему и когда отказался от проверки.

Кроме того, в новой версии введена проверка полигонов при запуске DRC: даже при отключении этого правила первыми проверяются модифицированные полигоны. Если проект содержит модифицированный, но не перезалитый полигон и найдены нарушения правил проектирования, выводится предупреждающее сообщение об этом нарушении.

Помимо этого, в обновленной версии Altium Designer улучшен пользовательский интерфейс и достигнуто общее повышение стабильности платформы.

ЛИТЕРАТУРА

- Чириков E. Altium Designer 17: обзор новых возможностей // ЭЛЕКТРОНИКА: Наука, Технология, Бизнес. 2017. № 1.
- Печатные платы: Справочник / Под ред. К.Ф.Кумбза. ТЕХНОСФЕРА, 2011.
- 3. Сабунин А.Е. Altium Designer. Новые решения в проектировании электроники.
- 4. https://vk.com/altium.ru
- 5. https://www.altium.com