# Хай-тек vs COVID-19...

M. Макушин $^1$ , И. Черепанов $^2$ 

УДК 621.38 | ВАК 05.11.17

Всемирная организация здравоохранения объявила пневмонию COVID-2019, вызываемую вирусом SARS-CoV-2, глобальной пандемией. Есть ли у человечества высокотехнологичный ответ этому вызову? Да. Это методы диагностики и лечения, дезинфекции, разрабатываются лекарственные средства и вакцины, специфичные к COVID-19. Развитие высокотехнологичных отраслей промышленности дошло до такого этапа, когда прорывы совершаются скорее не в узко-специализированной области, а на стыке нескольких научных дисциплин и производственных технологий. В борьбе с пандемией объединяются усилия специалистов в области вирусологии, микробиологии, микросистемной техники, электроники и т.д.

нформация о пандемии пневмонии COVID-2019, вызываемой коронавирусом SARS-CoV-2, по-прежнему заполняет ленты новостных агентств. Реакцию электронной промышленности на это событие можно условно рассматривать по нескольким направлениям: создание средств диагностики и лечения, изменение бизнесмоделей, использование ситуации в своих целях и т. п.

К средствам диагностики можно отнести тепловидение, компьютерную томографию и приборы тестирования на вирус. Одним из важнейших типов оборудования, используемого при лечении больных, являются аппараты искусственной вентиляции легких (ИВЛ). В качестве средств обеззараживания электронная промышленность в основном предлагает приборы на основе ультрафиолетовых светодиодов (УФ СИД).

Эпидемия COVID-19 в КНР, по всей видимости, преодолена. Так, в г. Шэньчжэнь (провинция Гуандун, юг страны), одном из крупнейших производственных комплексов электроники, с 24 февраля начали возобновлять работу промышленные предприятия [1]. К концу марта были сняты ограничения в эпицентре пандемии г. Ухань (провинции Хубэй, центральный Китай). Однако сохраняется возможность второй волны заболевания — осенью.

За пределами КНР многие электронные фирмы пересматривают прогнозы своих прибылей на 2020 год. Так уже сделали корпорации Broadcom (Сан-Хосе, шт. Калифорния) и Infineon (Мюнхен, ФРГ), а Applied Materials (Санта-Клара, шт. Калифорния), NXP Semiconductors (Эйндховен, Нидерланды) и ON Semiconductor (Феникс, шт. Аризона) сообщили об ожидающемся сокращении доходов за I кв. текущего года. Infineon, например, ожидает падения доходов за I кв. на 50—150 млн долл. Нижняя граница отражает сложившуюся ситуацию, а верхняя — ожидания в случае ее ухудшения.

У корпорации On Semiconductor аналогичные предположения—снижение продаж до 1,275—1,325 млрд долл. по сравнению с более ранними оценками в 1,355—1,405 млрд долл. [2]. После введения с 17 марта ограничений по COVID-19 во Франции корпорация STMicroelectronics (Женева, Швейцария) объявила о временной приостановке деятельности, что коснется 50% занятых. Возможна задержка с вводом в строй опытной линии по производству GaN приборов в г. Тур [3]. Подобных примеров сейчас великое множество.

#### ДЕЯТЕЛЬНОСТЬ ОРГАНОВ ВЛАСТИ

Если оставить за скобками карантинные мероприятия, то, с точки зрения организации производства необходимого оборудования и применения лекарственных средств, можно отметить два примера из деятельности американских властей. Так, президент США Дональд Трамп начал применять закон «Об оборонной промышленности» (Defense Production Act, DPA, 1950 г. с последующими изменениями и дополнениями). Этот закон позволяет правительству контролировать цены, объемы производства, заработной платы и др. Также он предусматривает контроль за экономическими параметрами в целях обеспечения национальной безопасности, изъятие собственности в целях национальной безопасности, требование от предприятий приоритетного исполнения ими контрактов и заказов, связанных с обороной и т.д. Несмотря на повышенную потребность почти во всех видах медицинского снабжения – от перчаток до масок, от тест-наборов до лекарств и аппаратов искусственной вентиляции легких, Трамп использовал DPA пока только один раз – 27 марта 2020 года он приказал корпорации General Motors немедленно приступить к производству аппаратов ИВЛ [4].

Кроме того, Управление по контролю качества пищевых продуктов и медикаментов (FDA) Министерства здравоохранения и социальных услуг США активно

<sup>&</sup>lt;sup>1</sup> ЦНИИ «Электроника», главный специалист, mmackushin@gmail.com.

<sup>&</sup>lt;sup>2</sup> ЦНИИ «Электроника», главный специалист.

ЭКОНОМИКА + БИЗНЕС

использует практику выдачи «Разрешений на использование лекарственных препаратов в чрезвычайных ситуациях» (Emergency Use Authorization, EUA). Это временные разрешения в процессе утверждения новых лекарств или новых показаний к ранее одобренным препаратам на их применение во время объявленной чрезвычайной ситуации (до завершения полного цикла процесса утверждения этих препаратов или их новых показаний) [5].

#### ЭКОНОМИЧЕСКИЕ ПОСЛЕДСТВИЯ

По данной тематике уже издаются специализированные исследования. Так, корпорация International Data Corporation (IDC, Фремингем, шт. Массачусетс) провела исследование «Влияние COVID-19 на прогноз мирового рынка полупроводниковых приборов» (Impact of COVID-19 on the Worldwide Semiconductor Market Forecast), в котором представлена методика оценки воздействия пандемии на рынок с использованием четырех сценариев, оценивающих диапазон возможных результатов. Каждый сценарий основан на различных предположениях и степени серьезности воздействия COVID-19 на деятельность высокотехнологичных фирм. Для каждого сценария выбран ряд критических факторов для формирования обновленного прогноза [6]. Также по данным IDC расходы конечных пользователей в 2020 году на ИТ-инфраструктуру (серверные и корпоративные системы хранения данных) сократятся. При текущем вероятном сценарии продажи серверов снизятся на 3,4% (88,6 млрд долл.), а расходы на закупку внешних корпоративных систем хранения данных (external enterprise storage systems, ESS) снизятся на 5,5% (до 28,7 млрд долл.) [7].

Аналогичного подхода придерживается исследовательская фирма Juniper Research (Саннивэйл, шт. Калифорния), прогнозирующая возможное сокращение продаж интеллектуальных приборов примерно на 42 млрд долл. в течение следующих девяти месяцев. В рамках проведенного анализа был изучен ряд основных вертикально-интегрированных цепочек поставок, обеспечивающих изготовление таких конечных электронных систем, как смартфоны, планшетные ПК, потребительская робототехника, умные динамики и интеллектуальная носимая электроника. По результатам исследования сформулированы три сценария возможного развития ситуации, отражающие слабое, среднее и сильное воздействие на рынок последствий пандемии COVID-2019 [8].

## Сокращение производства

Отмечается, что в случае сильного воздействия пандемии на рынок в ближайшие девять месяцев производство смарт-приборов сократится более чем на 80 млн шт. Причиной станут возможные задержки поставок и/или дефицит таких компонентов, как процессоры, дисплеи, источники питания и т.д. Все это может привести к срыву темпов производства у конечных поставщиков, включая

корпорации Apple, Samsung, Amazon, Xiaomi и Huawei. Все они должны быть готовы к заполнению любых прорывов в их цепочках поставок – для удовлетворения спроса на их продукцию.

Также прогнозируется, что на смартфоны в течение следующих девяти месяцев будет приходиться большая часть дефицита смарт-приборов, что составляет более 85% возможных недопоставок. Предполагается, что вирус может также вызвать более долгосрочные проблемы, в том числе затруднения при разработке новых приборов и конечных электронных систем. Кроме того, финансовая неопределенность от воздействия вируса означает, что спрос будет ниже, в результате чего поставщики не смогут полностью восстановить потери от продажи своей продукции.

# «Устойчивые» стратегии производителей

Исследование Juniper Research показало, что производителям интеллектуальных приборов необходимо диверсифицировать базы поставщиков компонентов. Утверждается, что это позволит обеспечить заполнение возможных пробелов в цепочке поставок.

В модели «производство точно в срок» слабым звеном всегда была устойчивость цепочек поставок. Эта модель предполагает такую организацию цепочек поставок, которая обеспечивает своевременную поставку компонентов непосредственно перед этапом изготовления конечной системы. В качестве страховки работоспособности данной модели всегда создавался определенный объем товарно-материальных запасов. Но в современной ситуации, как полагают специалисты Juniper Research, обладание полным ассортиментом товарно-материальных запасов может оказаться слишком дорогостоящим, и теперь поставщики должны рассмотреть вопрос о создании перечня «стратегических» компонентов [8].

#### Способы стимулирования производства

Поставщики медицинского оборудования не только наращивают собственное производство аппаратов ИВЛ, но и делают многое, чтобы другие производители, не работавшие ранее на рынке медицинского оборудования, могли наладить свое собственное производство медицинской техники. Так. корпорация Medtronic выложила в открытый доступ документацию на аппарат ИВЛ РВ560: руководство по эксплуатации и обслуживанию, проектно-сметную и технологическую документацию, схемную документацию и технические условия на проектирование. Вскоре будут представлены программируемые коды и другая информация. Это предоставит широкому кругу производителей, изобретателей, стартапов и научных учреждений возможность быстрого проектирования новых конструкций ИВЛ и наращивания их производства.

Аппарат ИВЛ РВ560 не нов, он выпускается с 2010 года и сейчас продается в 35 странах мира. Но он прост,

**ЭКОНОМИКА + БИЗНЕС** www.electronics.ru

технологичен в производстве и отвечает современным требованиям борьбы с COVID-19 [9]. Чего в этом действии больше — благотворительности или желания, воспользовавшись ситуацией, распродать запасы нереализованной продукции и расширить круг пользователей своих технологий, сказать трудно.

# СРЕДСТВА ДИАГНОСТИКИ

# Тепловизоры

Технология тепловидения была разработана сначала для военных, а затем для гражданских применений, таких как термография, средства наблюдения, пожаротушения, автомобильная электроника, охотничьи принадлежности и т. д. Повышенная температура тела человека, один из основных симптомов заболевания, легко контролируется с помощью тепловизоров, работающих в диапазоне волн от 8 до 14 мкм. Это помогает идентифицировать инфицированных среди огромных скоплений людей, например, в аэропортах, на вокзалах и т. д.

По данным исследования группы Yole Développement (Лион, Франция), в 2019 году было отгружено более 1,5 млн тепловизоров на сумму более 4,5 млрд долл. Предполагается, что мировой рынок тепловизоров увеличится с 4,3 млрд долл. в 2018 году до 6,7 млрд долл. в 2024-м (рис. 1).

Безусловно, в будущем тепловизоры получат более широкое распространение для повышения безопасности на границах, в аэропортах и т. п. Вероятно, к фирмамразработчикам тепловизоров, таким как FLIR, HikVision, Guide IR, Zhejiang Dali, Testo, Fluke и Seek Thermal, добавятся многие другие [10].

# ПЦР-методика: MEMS обеспечивают лучшие результаты

В целом, следует отметить, что в настоящее время существует два типа средств тестирования. Это портативные / переносные приборы, облегчающие диагностику по месту лечения («у кровати больного», по месту обращения в амбулаторный / первичный пункт оказания неотложной / скорой помощи — point of care, POC), а также стационарное



**Рис. 1.** Структура рынка тепловизоров в 2018 году и прогноз на 2024 год. *Источник: Yole Développement* 

оборудование (используемое в клинических условиях, с жестким или колесно-стоечным монтажом) (табл. 1).

Первоначально в основе всех методов обнаружения вируса SARS-CoV-2 лежал анализ обратной транскрипционной полимеразной цепной реакции (ОТ-ПЦР/PCR) в реальном масштабе времени. Этот тест требует в первую очередь знания генома вируса. Результаты работ по секвенированию полного генома SARS-CoV-2 была впервые опубликована китайскими учеными 10 января 2020 года. После этого международной группе ученых, возглавляемой специалистами из ФРГ, потребовалось всего семь дней, чтобы опубликовать первый протокол тестирования образцов анализов пациентов, в настоящее время принятый ВОЗ. Уже ведется работа по обнаружению вируса с помощью других

**Таблица 1.** Последние разработки средств тестирования на COVID-19 [11-13]

| Фирма                                                 | Тип изделия                                                                                                                                 | Время тестирования<br>(в минутах) |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Abbott                                                | Abbott ID NOW ™ COVID-19 - Положительные результаты – 5, портативное средство тестирования на месте (осмотра) Отрицательные результаты – 13 |                                   |
| BioFire Defense<br>(отделение компании<br>bioMérieux) | BIOFIRE® COVID-19 - 45<br>стационарное средство тестирования в лаборатории<br>среднего/высокого уровня сложности                            |                                   |
| Mesa Biotech                                          | Accula SARS-CoV-2 -<br>портативное средство тестирования на месте (осмотра)                                                                 | 30                                |

ЭКОНОМИКА + БИЗНЕС

методов обнаружения, которые могут быть быстрее и дешевле в реализации, таких как тестирование на антитела или тесты CRISPR-Casl3.

Традиционные ПЦР-средства обладают длительным циклом достижения результатов. Кроме того, они малочувствительны при низкой вирусной нагрузке в образце мазка тестируемых образцов, что может привести к значительному количеству ложноотрицательных результатов. Технология MEMS дает два основных преимущества для ПЦР: меньший размер по сравнению с обычными ПЦР-приборами и интеграция анализа содержимого множественных микропотоков. Обогреватели и реакционные MEMS камер обладают малой тепловой массой, что значительно ускоряет цикл нагрева-охлаждения и обеспечивает получение результата за считанные минуты. Интеграция микропотоков при обработке образцов и реагентов позволила создать новые методы, такие как цифровая ПЦР (digital PCR) и микрокапельная цифровая ПЦР (Droplet dPCR, ddPCR). Такие приборы обеспечивают высокий уровень параллелизма операций тестирования, что позволяет существенно повысить чувствительность и сократить время тестирования. Результаты первоначального исследования (еще не подтвержденные дальнейшими клиническими испытаниями) показали, что ddPCR-прибор имеет в 500 раз меньший порог обнаружения SARS-CoV-2, чем у традиционных ПЦР-приборов. Это означает, что когда образец пациента имеет низкую вирусную нагрузку, ddPCR-прибор имеет гораздо более высокий шанс правильно идентифицировать инфицированного пациента по сравнению с традиционной ПЦР.

Недавно сотрудники Исследовательского института электроники и телекоммуникаций и биотехнологической фирмы Genesystem (обе – г. Тэджон, Республика Корея) разработали прототип недорогой портативной системы ПЦР с полиимидной (полимерной) камерой, микронагревателем и встроенным КМОП-формирователем сигналов изображения для оптического считывания результатов (рис. 2).

Как бы это ни звучало, но пандемия COVID-19 открывает новые перспективы перед изготовителями MEMS и микропотоковых приборов, с одной стороны,

а с другой – расширяет аналитический инструментарий медиков и биологов [5].

# Компьютерная томография

Косвенный диагноз COVID-19 можно поставить с использованием компьютерной томографии (КТ). Многие из тяжелых осложнений, вызванных COVID-19, возникают из-за пневмонии. Это можно увидеть на КТ как «затемнение по типу матового стекла», поэтому КТ использовалась в качестве диагностического инструмента на ранних этапах эпидемии в больницах в КНР, а теперь и по всему миру. Из-за своей высокой чувствительности КТ в настоящее время является методом визуализации, выбранным для диагностики и мониторинга пациентов с COVID-19. Объем продаж средств компьютерной томографии в 2018 году составил около 4 млрд долл., сейчас же рост их продаж предсказать трудно. Все основные поставщики КТ-сканеров работают в тесном сотрудничестве с больницами и правительственными ведомствами в различных странах мира. Такое взаимодействие позволяет облегчить установку новых КТ-сканеров и их использование на местах. Недавнее появление на этом рынке китайских игроков с более дешевыми системами может оказать существенное влияние на текущий кризис, особенно в развивающихся странах [10].

# СРЕДСТВА ЛЕЧЕНИЯ / УХОДА ЗА БОЛЬНЫМИ

Наиболее часто в контексте борьбы с COVID-19 упоминаются аппараты ИВЛ, предназначенные для принудительной подачи газовой смеси (кислород и сжатый осушенный воздух) в легкие для насыщения крови кислородом и удаления из легких углекислого газа (табл. 2). Некоторые стационарные аппараты ИВЛ могут одновременно обслуживать несколько пациентов. В таких приборах, как правило, есть возможность индивидуальной подстройки режима вентиляции.

Однако безопасны ли сами ИВЛ? По данным Forbes, в Нью-Йорке до 80% погибших от пандемии были подключены к аппаратам ИВЛ. К подобным сообщениям следует относиться осторожно. Во-первых, к ИВЛ подключают наиболее тяжелых больных, а в этой категории смертность всегда намного выше, чем в среднем. Во-вторых, неожиданно

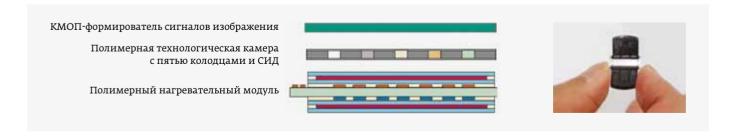



Рис. 2. Схема опытного образца недорогой портативной ПЦР-системы на основе микросистемной технологии (слева) и система, встроенная в тестовый картридж (справа)

**ЭКОНОМИКА + БИЗНЕС** www.electronics.ru

широкое использование аппаратов ИВЛ привело к тому, что их не всегда используют подготовленные к этому врачи, а для ослабленных болезнью пациентов крайне важна правильная настройка аппарата ИВЛ. Так что дело не столько в самой технике, сколько в ее использовании. Кроме того есть вопросы стерилизации и т.д. [14].

Важным средством оптимизации работы аппаратов ИВЛ может стать технология «цифровых двойников». Недавно корпорации OnScale и LEXMA приступили к совместным работам по созданию индивидуальных «цифровых двойников» легких пациентов, которые могут точно предсказать уровень насыщенности крови кислородом и скорость кровотока. Это существенно поможет врачам принимать критические решения относительно использования аппаратов ИВЛ. Каждый «цифровой двойник» содержит данные компьютерной томографии и рентгенографии, наборы данных моделирования воздушного потока и кровотока в легких, обновляемые в реальном масштабе времени. Для повышения скорости и точности прогнозирования используются средства искусственного интеллекта, обученные по моделируемым и измеренным данным пациента [15].

## СРЕДСТВА ДЕЗИНФЕКЦИИ / СТЕРИЛИЗАЦИИ

Если говорить о мерах дезинфекции, то самой распространенной практикой является использование химических средств. Еще один вариант дезинфекции – использование коротковолновых УФ-СИД (ультрафиолет С, УФ-С, длина волны излучения 280–100 нм) и СИД, работающих в дальней УФ-области спектра (ДУФ, длина волны излучения 122–200 нм).

Ультрафиолетовое излучение обладает способностью убивать вирусы и бактерии, разрушая их ДНК, а также может использоваться для стерилизации. Наиболее эффективны в этом плане по мощности излучения и компактности – приборы и системы на основе УФ-С СИД. В 2019 году их рынок был довольно мал – всего 108 млн долл. Но из-за пандемии некоторые фирмы все активнее используют УФ-излучение. Например, шанхайская фирма Yanggao (общественный транспорт) превратила обычный моечный бокс в камеру дезинфекции с УФ-С-излучением для автобусов, сократив 40-минутный процесс до пяти минут. Предполагается что в дальнейшем УФ-С СИД найдут более широкое применение (рис. 3).

Производители УФ СИД обнаружили, что запросы клиентов на их продукцию за февраль 2020 года выросли в среднем более чем в пять раз. Например, фирма Seoul Viosys (Ансан, Республика Корея) при первоначальном размещении акций (IPO) столкнулась с тем, что за короткое время спрос на ее акции превысил предложение более чем в 900 раз [10].

Что касается ДУФ, то недавно корпорация Sensor Electronic Technology (SETi, Колумбия, Ю. Каролина) представила средство стерилизации, способное уничтожить вирус SARS-CoV-2 за 30 с. Утверждается, что за это время гибнет до 99,9% короновирусов. Тестирование было осуществлено совместно с Университетом Корё (Корейский университет, Сеул). При разработке ДУФ СИД использовался сложный (составной) полупроводниковый материал, созданный SETi совместно с материнской корпорацией Seoul Viosys [20].

Таблица 2. Некоторые аппараты ИВЛ [16-19]

| Название<br>компании                                    | Тип изделия                                                                   | Краткая характеристика                                                                                                                                                      |
|---------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Medtronic                                               | Puritan Bennett™ 980 (РВ980) –<br>стационарный аппарат ИВЛ<br>высокого класса | Пневматический; способ вентиляции – инвазивный/неинвазивный; вес аппарата 35 кг; есть возможность подключения источника кислорода                                           |
| Medtronic                                               | Puritan Bennett™ 840 (PB840) –<br>мощный комплекс ИВЛ                         | Предназначен для обеспечения естественного дыхания для пациентов весом от 0,5 до 150 кг; вес аппарата 18,2 кг; есть возможность подключения источника кислорода             |
| Mindray                                                 | SynoVent E3 -<br>мощный аппарат ИВЛ                                           | Оснащен цветным сенсорным ЖК-дисплеем (диагональ 10,4 дюйма), может работать в нескольких режимах вентиляции, подходит для использования в стационаре и при транспортировке |
| Philips                                                 | Trilogy 202 -<br>портативный аппарат ИВЛ                                      | Предназначен для любой внутрибольничной транспортировки пациента; аккумулятор с зарядом на 3 ч работы; масса аппарата 5,6 кг                                                |
| Университет<br>штата Илли-<br>нойс (Урбана-<br>Шампейн) | Illinois RapidVent -<br>опытный образец аппарата<br>экстренной ИВЛ            | Аппарат может использоваться для оказания неотложной помощи<br>больным COVID-19; образец проработал более 75 ч                                                              |

ЭКОНОМИКА + БИЗНЕС

0.00

В предложенном кратком обзоре охвачены далеко не все возможности электронной промышленности по борьбе с COVID-19. Тем не менее надо отметить, что мировая электронная промышленность оказалась в высокой степени готова к пандемии. Во-первых, существуют обширные производственные мощности, которые можно быстро перенастроить на выпуск необходимой продукции. Во-вторых, подход проектирования на основе стандартизированных блоков, модулей и платформ существенно упрощает и ускоряет разработку новой продукции. В-третьих, доступен огромный рынок аттестованных сложно функциональных блоков, в которых воплощена вся необходимая интеллектуальная собственность. В-четвертых, существует разветвленная сеть центров проектирования, оснащен-

ных различными типами инструментальных средств САПР, способных быстро проектировать необходимые системы и их комплектующие. Главное, что проявляется в сложившейся ситуации – готовность быстрого реагирования различных отраслей промышленности, научного сообщества и органов власти на складывающуюся ситуацию, их совместная работа.

#### **ЛИТЕРАТУРА**

- 1 实地街访:复工一周后的华强北商圈. 2020-02-28.
- Nitin D. Infineon Withdraws 2020 Outlook as Industry 2. Visibility Falls // EE Times. 03.26.2020.
- Pelé Stop A-F. Cut or Maintain European Chip Production 3. Amid Covid-19 // EE Times. 03.24.2020.
- Jorgensen B. Supply Chain 101: The DPA Won't "Cure" Covid-19 // EE Times. 03.31.2020.
- Fitzgerald A.M. and Khademolhosseini F. MEMS in the Fight Against Covid-19 // EE Times magazine. 04.01.2020.
- Davis S. COVID-19 To Have Significant Effect on Worldwide Semiconductor Market in 2020, According to IDC // Semiconductor-digest. March 19. 2020.
- Worldwide Server and Enterprise Storage Systems Markets Will Decline in 2020, Impacted by the COVID-19 Pandemic, According to IDC // Semiconductor Digest. March 27. 2020.
- **Davis S.** Juniper Research: Coronavirus to Cause \$42 Billion Revenue Gap in Global Consumer Device Shipments over the Next 9 Months // Semiconductor-digest. March 26. 2020.
- Medtronic Continuing to Increase Ventilator Production to Address COVID-19 Pandemic // Semiconductor Digest. March 26. 2019.

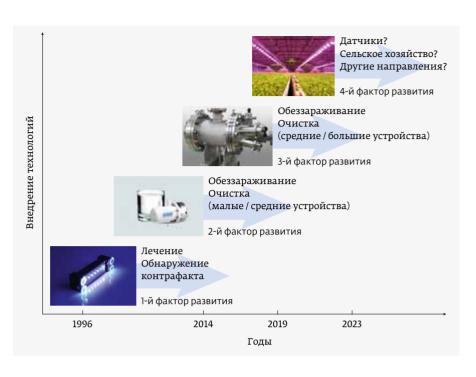



Рис. 3. Маршрутная карта развития применений УФ-С СИД

- 10. Damianos D., Clerc S., Villien M., Mounier E., Boulay P. Coronavirus COVID-19 pandemic: How can technologies help to detect and stem the deadly virus? // I-Micronews. 03.19. 2020.
- 11. Abbott launches molecular point-of-care test to detect novel coronavirus in as little as five minutes // I-Micronews. March 30, 2020.
- 12. BioMérieux receives emergency use authorization for BIOFIRE® COVID-19 test // I-Micronews, March 24, 2020.
- 13. Mesa Biotech receives emergency use authorization from FDA for a 30 minute point of care molecular COVID-19 test // I-Micronews. March 25. 2020.
- 14. Таиров Р. В Нью-Йорке зафиксировали 80%-ную смертность среди подключенных к ИВЛ пациентов с коронавирусом. Forbes. 9 апреля 2020.
- 15. **Davis S.** OnScale Launches Project BreathEasy: Digital Twins of Lungs to Improve COVID-19 Patients Outcomes // Semiconductor Digest. April 14.2020 https://www.semiconductor-digest.com/2020/04/14/onscalelaunches-project-breatheasy-digital-twins-of-lungs-to-improvecovid-19-patients-outcomes/
- 16. SynoVent E3. Ventilators.
- 17. Respironics Trilogy 202.
- 18. Illinois RapidVent Emergency Ventilator Developed for COVID-19 patients // Semiconductor Digest. April 1. 2020.
- 19. Medtronic Continuing to Increase Ventilator Production to Address COVID-19 Pandemic // Semiconductor Digest. March 26 2019
- 20. SETi's Violeds Technology Proves 99,9% Sterilization of Coronavirus (COVID-19) in 30 Seconds // Semiconductor Digest. April 2. 2020.



28 сентября - 3 октября Республика Крым, г. Ялта

# Международный Форум «Микроэлектроника 2020» ключевое событие года в области микроэлектронных технологий

- ▼ Научная конференция «ЭКБ и микроэлектронные модули»
- Деловая программа
  Демонстрационная зона
  - Фестиваль инноваций



# ПРИ ПОДДЕРЖКЕ











**ОРГАНИЗАТОРЫ** 

СТРАТЕГИЧЕСКИЙ ПАРТНЁР











ГЕНЕРАЛЬНЫЙ ИНФОРМАЦИОННЫЙ ПАРТНЁР



Оператор Форума: Компания «ПрофКонференции» • Тел.: +7 (495) 641-57-17 • E-mail: info@microelectronica.pro Подробная информация и регистрация участников на официальном сайте Форума: microelectronica.pro