Особенности процесса жидкофазного магнетронного распыления для различных материалов

М. Назаренко¹, К. Моисеев, к. т. н.², А. Сигов, д.ф-м.н.³

УДК 621.793.182 | BAK 05.27.06

Формирование слоев металлизации является одной из наиболее распространенных и трудоемких операций при производстве изделий микроэлектроники. При этом толщины таких слоев составляют от нескольких десятых до десятков, а то и сотен микрометров. Например, для производства плат для силовых интегральных схем требуются толщины меди от 100 мкм, а для производства элементов Пельтье – не менее 20 мкм [1, 2]. В данной статье рассматривается перспективный метод формирования слоев металлизации различной толщины – жидкофазное магнетронное распыление.

каждым годом повышаются требования к изделиям и устройствам микроэлектроники, что приводит к ужесточению требований, предъявляемых в том числе к процессам металлизации. Сокращение времени формирования толстых слоев для снижения себестоимости изделия приводит к необходимости повышения производительности, то есть к увеличению скоростей осаждения. Повышение степени миниатюризации изделий требует повышения точности создаваемых микроструктур, например, при создании микросборок, монтаже чипов, элементов оптических схем [3]. Требования к качеству внешнего вида конечного изделия, например, печатных плат на керамическом основании [4], приводят к ужесточению требований к качеству внешнего вида металлизации.

Для ряда современных изделий микро- и наноэлектроники использование гальванических методов получения слоев металлизации недопустимо. Например, при формировании покрытий для миниатюрных термоэлектрических модулей или покрытий на чувствительных к среде элементах, таких как кремниевые детекторы. Это обусловлено агрессивностью среды раствора по отношению к изделиям, а также неравномерностью осаждаемых слоев, которая составляет не менее ±15% [5]. В качестве альтернативы в первую очередь рассматриваются методы физического осаждения из газовой фазы (PVD-методы). Для большинства методов PVD характерны невысокие скорости осаждения покрытий по сравнению с гальваническими. Наиболее производительными среди PVD-методов являются дуговое испарение (ИД) и ионное распыление

в магнетронных системах в парах мишени, или иначе –

поскольку объединяет в себе высокие скорости осаждения (до 40 мкм/мин на неподвижную подложку) и равно-

мерность покрытия (не более 5%), соизмеримую с клас-

сическим магнетронным распылением (МР) [6, 7]. За счет

ионизированной фазы, в отличие от термических мето-

дов, пленки обладают высокими показателями адгезии,

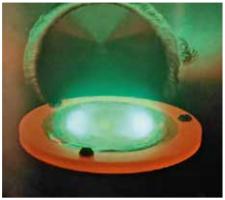
сравнимыми с результатами классического МР. В мето-

де отсутствует капельная фаза, которая является пробле-

Метод ЖФМР заслуживает наибольшего внимания,

жидкофазное магнетронное распыление (ЖФМР).

цесса и неполноты необходимых результатов исследований в данном направлении. Следствием этого является отсутствие наработанной базы материалов, режимов их осаждения и свойств полученных покрытий. Так, в литературе, в основном, описано осаждение медных пленок [8, 9], при этом практически не приводятся данные по технологическим режимам и их влиянию на свойства получаемых покрытий. Все это не позволяет технологам делать обоснованный выбор в пользу ЖФМР.


Из немногочисленных работ [10—13] известно, что параметры процесса ЖФМР, а также сам характер его протекания очень сильно зависят от материала мишени. В данной работе предпринята попытка разработки универсальной классификации характера протекания процесса ЖФМР в зависимости от материала мишени. Такая классификация позволит на начальном этапе определять характер протекания процесса и обоснованно назначать диапазоны режимов осаждения при формировании покрытий этим методом.

мой дугового осаждения. А структура поверхности обеспечивает хороший внешний вид покрытий.
Однако реализация ЖФМР пока не получила широкого распространения в силу относительной сложности процесса и неполноты необходимых результатов исследований в данном направлении. Следствием этого являет-

¹ МИРЭА – Российский технологический университет, аспирант, m.v.makarova@list.ru.

² МГТУ им. Н.Э. Баумана, доцент.

³ МИРЭА – Российский технологический университет, профессор.

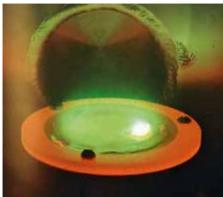


Рис. 1. Работа магнетрона: а - в классическом режиме в среде аргона; б - в режиме самораспыления

ОСОБЕННОСТИ ФИЗИКИ ПРОЦЕССА ЖФМР

Процесс ионного распыления в магнетронных системах в парах мишени является разновидностью классического магнетронного распыления [7], но имеет свои особенности. В классическом МР нагрев мишени под воздействием ионной бомбардировки является негативным явлением и устраняется системой охлаждения магнетронного источника, что в целом делает процесс неэффективным с точки зрения КПД. В методе ЖФМР мишень (материал) помещают в тигель и специально изолируют от катода магнетрона для дополнительного разогрева и перевода в жидкое состояние. После полного расплавления мишени в дополнение к физическому распылению начинается более интенсивный процесс испарения, благодаря чему суммарная скорость образования паровой фазы увеличивается на порядок.

Концентрация частиц мишени над ней становится сопоставимой с концентрацией рабочего газа (аргона) и позволяет обеспечить в области горения разряда необходимое давление для его поддержания, в диапазоне от 10^{-2} до 10^{-1} Па. Это дает возможность убрать подачу аргона и продолжать стабильный процесс в собственных парах материала мишени в так называемом режиме самораспыления (рис. 1).

Исходя из описанных выше особенностей процесса можно заключить, что одним из основных факторов, определяющих переход в режим

самораспыления, является достижение давления паров мишени в области над магнетроном, достаточного для горения разряда в собственных парах мишени.

КЛАССИФИКАЦИЯ МАТЕРИАЛОВ ДЛЯ ПРОЦЕССА ЖФМР

Анализируя физические свойства твердых материалов [14], используемых для получения функциональных слоев, а именно значения температуры плавления, давления насыщенных паров в вакууме при давлении 10^{-2} Па и температуры его достижения, возможно классифицировать материалы по трем группам.

І группа – материалы, температура плавления которых ниже температуры, при которой достигается давление насыщенных паров при давлении 10^{-2} Па. Примерами таких материалов являются Sn, Pb, Sb, Bi.

Таблица 1. Особенности технологического процесса для материалов I группы

Критерий ТП	Описание ТП	Характеристики ТП
Температура мишени ниже температуры ее плавления. Давление насыщенных паров мишени <10 ⁻² Па	Классическое магнетронное распыление. Фаза мишени - твердая	Невысокие скорости осаждения. Низкое тепловое воздействие на подложки.
Температура мишени совпадает с температурой плавления мишени или немного превышает ее. Давление насыщенных паров мишени <10 ⁻² Па	ЖФМР с частичным добавлением рабочего газа для поддержания горения разряда. Фаза мишени - жидкая	Скорости осаждения выше, чем при классическом МР, но ниже, чем при ЖФМР в режиме самораспыления (без рабочего газа). Тепловая нагрузка на подложки значительно ниже, чем при полноценном ЖФМР
Температура мишени превышает температуру плавления мишени. Давление насыщенных паров ≥10 ⁻² Па	ЖФМР в режиме самораспы- ления (без рабочего газа). Фаза мишени - жидкая	Высокие скорости осаждения. Значительное тепловое воздействие на под- ложки

Таблица 2. Особенности технологического процесса для материалов II группы

Критерий ТП	Описание ТП	Характеристики ТП
Температура мишени ниже температуры ее плавления. Давление насыщенных паров мишени <10 ⁻² Па	Классическое магнетронное распыление. Фаза мишени - твердая	Невысокие скорости осаждения. Низкое тепловое воздействие на подложки
Температура мишени совпадает с температурой плавления мишени или немного превышает ее. Давление насыщенных паров ≥10 ⁻² Па	ЖФМР в режиме самораспы- ления (без рабочего газа). Фаза мишени - жидкая	Высокие скорости осаждения. Значительное тепловое воздействие на подложки

Таблица 3. Особенности технологического процесса для материалов III группы

Критерий ТП	Описание ТП	Характеристики ТП
Температура мишени ниже температуры ее плавления. Давление насыщенных паров мишени <10 ⁻² Па	Классическое магнетронное распыление. Фаза мишени - твердая	Невысокие скорости осаждения. Низкое тепловое воздействие на подложки
Температура мишени ниже температуры ее плавления. Давление насыщенных паров ≥10 ⁻² Па	ЖФМР в режиме самораспы- ления (без рабочего газа). Фаза мишени – твердая	Высокие скорости осаждения. Повышенное тепловое воздей- ствие на подложки
Температура мишени совпадает с температурой плавления мишени или превышает ее. Давление насыщенных паров ≥10 ⁻² Па	ЖФМР в режиме самораспы- ления (без рабочего газа). Фаза мишени - жидкая	Сверхвысокие скорости осаждения. Крайне высокое тепловое воздей- ствие на подложки

Таблица 4. Особенности процесса осаждения материалов различных групп

Этап	Материалы I группы	Материалы II группы	Материалы III группы
Разогрев мишени до достижения необ- ходимого давления насыщенных паров (зоны 1-3 на рис. 2)	Быстрый переход из твердой фазы в жидкую, при этом давление насыщенных паров еще недостаточно для горения разряда в собственных парах мишени	Происходит разогрев мишени. При достижении необходимого давления насыщенных паров начинается переход мишени в жидкую фазу, так как темпера- тура плавления совпадает с темпе- ратурой достижения необходимого давления	Происходит разогрев мишени без перехода в жидкую фазу. О достижении давления насыщенных паров свидетельствует резкий рост ионного тока
Переход в режим самораспыления (зона 4 на рис. 2)	Мишень в жидком состоя- нии	Мишень в жидком состоянии	Мишень в твердом состоянии
Окончание процесса (зона 5 на рис. 2)	Самопроизвольно при окончании материала (так как происходит снижение ионного тока и давления насыщенного пара) или принудительно по времени	Самопроизвольно при окончании материала (так как происходит снижение ионного тока и давления насыщенного пара) или принудительно по времени	Как правило происходит принудительно по времени

RENWEX

«Возобновляемая энергетика и электротранспорт»

21-23 ИЮНЯ 2022

Россия, Москва, ЦВК «ЭКСПОЦЕНТР», павильон №3

КЛЮЧЕВЫЕ НАПРАВЛЕНИЯ

- Развитие розничного рынка ВИЭ и необходимых технических решений
- 📵 Нормативное регулирование ВИЭ
- Использование ВИЭ для энергоснабжения удаленных и изолированных потребителей
- Развитие водородной энергетики
- Использование биотоплива и утилизация отходов
- Международный опыт развития возобновляемой энергетики
- Цифровизация современной энергетики
- Развитие систем накопления энергии для промышленных потребителей и домохозяйств
- Развитие электротранспорта и сопутствующей инфраструктуры

www.renwex.ru

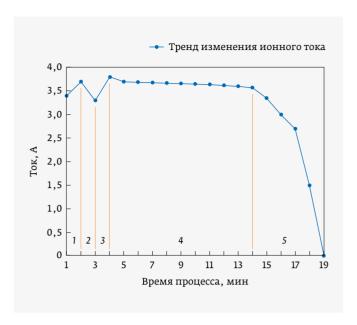
Приподдержке

II группа — материалы, температура плавления которых совпадает (или близка ± 100 °C) к температуре, при которой достигается давление насыщенных паров при давлении 10^{-2} Па. Примеры таких материалов — Cu, Ag, Au, Al.

III группа — материалы, температура плавления которых значительно превышает температуру, при которой достигается давление насыщенных паров при давлении 10^{-2} Па. Примерами таких материалов являются Мо, W, V, Ti, Cr, Ta.

ТЕХНОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ПРОЦЕССА ЖФМР ДЛЯ РАЗНЫХ ГРУПП МАТЕРИАЛОВ

В зависимости от принадлежности материала к определенной группе технологический процесс (ТП) осаждения имеет свои особенности (табл. 1, 2 и 3).


Характер протекания процесса ЖФМР для материалов всех трех групп носит общий характер (рис. 2), однако для каждой из них имеются свои особенности (табл. 4).

В зоне 1 (от 0 до 2 мин) мишень находится в твердом состоянии, в зоне 2 (от 2 до 3 мин) происходит расширение мишени, увеличение ее толщины из-за нагрева. Ионный ток падает из-за повышения уровня материала над магнетроном при сохранении коэрцитивной силы магнитной системы. В зоне 3 происходит активное испарение мишени (от 3 до 4 мин), что приводит к увеличению ионного тока, но процесс горения разряда пока невозможен без рабочего газа. Зона 4 (от 4 до 14 мин) — разряд может существовать без рабочего газа, стабильный режим самораспыления. Зона 5 (от 14 до 19 мин) — полное испарение материала мишени и самопроизвольное угасание разряда (может отсутствовать для материалов ІІІ группы, поскольку мишень может полностью не вырабатываться).

В заключение можно отметить, что метод жидкофазного магнетронного распыления благодаря своей универсальности и экологичности обладает большим потенциалом к замещению существующих производственных методов, предназначенных для формирования толстых слоев металлизации различного назначения. Основным препятствием для более широкого использования метода является недостаточное количество исследований, позволяющих обоснованно выбирать метод и определять начальные параметры и режимы процесса в зависимости от осаждаемых материалов.

В результате анализа физики процесса жидкофазного магнетронного распыления и свойств осаждаемых материалов удалось классифицировать материалы на три группы по критерию соотношения температуры плавления и температуры достижения давления насыщенных паров, достаточного для поддержания процесса распыления в собственных парах осаждаемого материала в диапазоне от 10^{-2} до 10^{-1} Па.

Рис. 2. Зависимость ионного тока от времени процесса ЖФМР (при стабилизации по мощности; стабилизированная мощность – 1,2 кВт)

Данная классификация позволила выделить этапы процесса жидкофазного магнетронного распыления и описать особенности протекания процесса на каждом из них. Такое описание является достаточно универсальным и может быть предложено для разработки процессов осаждения методом ЖФМР любого материала, а также для выбора начальных диапазонов режимов и параметров процесса ЖФМР как в лабораторных установках, так и в производственных.

ЛИТЕРАТУРА

- 1. **Медведев А. М.** Сборка и монтаж электронных устройств. М.: ТЕХНОСФЕРА, 2007. 256 с.
- Громов Г. Г. Объемные или тонкопленочные термоэлектрические модули // Компоненты и технологии. 2014. № 8. С. 108–113.
- 3. **Третьяков С. Д.** Современные технологии производства радиоэлектронной аппаратуры. Учебное пособие. СПб: Университет ИТМО, 2016. 102 с.
- 4. Печатные платы. Справочник: в 2-х т. / Под ред. К. Ф. Кумбза. М.: ТЕХНОСФЕРА, 2011. Т. 1. С. 898–927.
- 5. **Гамбург Ю. Д.** Гальванические покрытия. Справочник по применению. М.: ТЕХНОСФЕРА, 2006. 216 с.
- 5. **Блейхер Г.А., Кривобоков В.П., Юрьева А.В.** Магнетронное осаждение покрытий с испарением мишени // Журнал технической физики. 2015. Т. 85. № 12. С. 56–61.
- 7. **Кузьмичев А. И.** Магнетронные распылительные системы. Кн. 1. Введение в физику и технику магнетронного распыления. М.: Аверс, 2008. 244 с.

- 8. Moiseev K. M., Nazarenko M. V. Use of magnetron sputtering with liquid target in manufacturing of electronic components for spacecraft // AIP Conference Proceedings 2019, 2171, 170010.
- 9. Блейхер Г. А., Кривобоков В. П., Юрьева А. В. Анализ возможностей магнетронных распылительных систем для высокоскоростного осаждения функциональных покрытий // Известия ВУЗов. Физика. 2014. № 57. C. 104-108.
- 10. Данилин Б.С., Какурин М.В., Минайчев В.Е., Одиноков В. В., Сырчин В. К. Осаждение металлических пленок путем распыления из жидкой фазы // Микроэлектроника. 1977. С. 84-87.

- 11. Сиделёв Д. В. Осаждение покрытий из хрома и никеля с помощью магнетронного диода с «горячей» мишенью: Дисс. на соиск. уч. ст. канд. тех. наук: М., 2018. 138 с.
- 12. **Kaziev A.V., Tumarkin A.V. et al.** Discharge parameters and plasma characterization in a dc magnetron with liquid Cu target // Vacuum. 2018. PP. 48-54.
- 13. Tumarkin A., Zibrov M., Khodachenko G., Tumarkina D. High-rate deposition of silicon films in a magnetron discharge with liquid target // Journal of Physics: Conference Series. 2016. V. 768. PP. 1-4.
- 14. Бабичев А.П., Бабушкина Н.А., Братковский А.М. Физические величины. Справочник. М.: Энергоатомиздат, 1991. 1232 c.

КНИГИ ИЗДАТЕЛЬСТВА «ТЕХНОСФЕРА»

Цена 1188 руб.

СПРАВОЧНИК ПО ВАКУУМНОЙ ТЕХНИКЕ И ТЕХНОЛОГИЯМ

М.: ТЕХНОСФЕРА, 2011. - 736 c., 978-5-94836-294-6

Под ред. Д. Хоффмана, Б. Сингха, Дж. Томаса III

При поддержке ФГУП «Научно-исследовательский институт вакуумной техники им. С.А. Векшинского»

Перевод с англ. под ред. В.А. Романько, С. Б. Нестерова

Предлагаемый справочник по вакуумной технике и технологиям является переводом книги, созданной американскими специалистами. В справочнике приведены фундаментальные положения технологии вакуума и физики поверхности, рассмотрены конструкции различных типов насосов и средств измерения вакуума и течеискания. Подробно описаны различные вакуумные системы и технологии. Приведены примеры применения вакуумной техники. Большое внимание в справочнике уделено описанию технологии получения и поддержания безмасляного вакуума. Справочник состоит из пяти частей:

- 1) введение;
- 2) получение вакуума (насосы и технологии, используемые в настоящее время в эксплуатации и конструкции);
- 3) вакуумные измерения (давление, парциальное давление, поток газа, обнаружение течей, калибровка и технологии, связанные с вакуумметрией);
- 4) элементы и конструкции вакуумных систем, включая материалы, клапаны, фланцы, эксплуатацию и техническое обслуживание, а также очистку и поддержание чистоты системы;
- 5) применение высоковакуумной и сверхвысоковакуумной технологии. Информация, включенная в настоящий справочник, предназначена для тех, кто практически использует вакуумную технологию.

Справочник содержит множество ссылок для получения подробных сведений в конкретных представляющих интерес областях.

Издание содержит значительный объем экспериментальных данных, необходимых при проектировании и эксплуатации специального вакуумного технологического оборудования. Справочник является прекрасным дополнением к отечественным изданиям и будет полезен для инженерно-технических работников и специалистов, занимающихся конструированием, изготовлением и эксплуатацией вакуумных систем, а также для студентов и аспирантов технических вузов.

КАК ЗАКАЗАТЬ НАШИ КНИГИ?

🖂 125319, Москва, а/я 91; 📞 +7 495 234-0110; 🕾 +7 495 956-3346; knigi@technosphera.ru, sales@technosphera.ru

100% ГАРАНТИЯ ПОЛУЧЕНИЯ ВСЕХ НОМЕРОВ

Стоимость 2200 р. за номер Периодичность: 10 номеров в год

www.electronics.ru

Стоимость 1450 р. за номер Периодичность: 8 номеров в год www.photonics.su

Стоимость 1450 р. за номер Периодичность: 6 номеров в год www.j-analytics.ru

ПОДПИСКА НА ЖУРНАЛЫ

www.technosphera.ru

Стоимость 1300 р. за номер Периодичность: 8 номеров в год www.lastmile.su

Стоимость 1300 р. за номер Периодичность: 8 номеров в год www.nanoindustry.su

Стоимость 1800 р. за номер Периодичность: 4 номера в год www.stankoinstrument.su