Антенные переключатели

Часть 3

В. Кочемасов, к. т. н.¹, А. Сафин, к. т. н.², С. Дингес, к. т. н.³

УДК 621.389 | ВАК 2.2.2

В первой и второй частях статьи, опубликованных в седьмом и восьмом номерах журнала «ЭЛЕКТРОНИКА: Наука, Технология, Бизнес» за 2022 год, было рассказано о различных антенных приемопередающих переключателях. В данном номере рассматривается еще один тип таких переключателей.

НИТРИД-ГАЛЛИЕВЫЕ SPDT-ПЕРЕКЛЮЧАТЕЛИ

После GaAs-переключателей на рынке появились GaNизделия [17, 18], выпускаемые в интегральном исполнении компаниями Qorvo, UMS, METDA Semiconductors (табл. 11). В силу того, что GaN-переключатели способны работать при существенно более высоких температурах, чем изделия, изготовленные по другим технологиям (рис. 30), они могут обеспечивать либо значительно большие мощности, либо более высокую надежность в случае работы при меньших температурах, характерных для других технологий.

При работе с непрерывными СВЧ-сигналами на частотах до 6 ГГц в нитрид-галлиевых переключателях достигаются мощности до 70 Вт (модель RFSW2100D, компания Qorvo), на частотах до 12 ГГц – до 40 Вт (модель BW138, компания METDA Semiconductors), до 18 ГГц – 20 Вт (модель CHS8618, компания UMS) и до 40 ГГц – 4 Вт (модель SDN106, компания Northrop Grumman). В импульсных режимах эти мощности могут быть выше. Так, в переключателе TGS2355, рассчитанном на работу в диапазоне частот 0,5–6,0 ГГц, коммутируемая мощность достигает 125 Вт для импульсов длительностью 20 мкс, следующих со скважностью 10%. Все известные GaN-переключатели реализуются по симметричным схемам

Рис. 30. Надежностные характеристики нитридгаллиевого переключателя TGS2355 (компания Qorvo): а – среднее время наработки на отказ (CBHO) в часах в зависимости от рабочей температуры кристалла T_к; б – максимальная температура кристалла в зависимости от входной мощности; в – максимальная температура кристалла T_{к макс} в зависимости от длительности и скважности импульсных сигналов

¹ ООО «Радиокомп», генеральный директор, vkochemasov@radiocomp.ru.

- ² НИУ «МЭИ», заведующий кафедрой формирования и обработки радиосигналов, arsafin@gmail.com.
- ³ МТУСИ, доцент кафедры радиооборудования и схемотехники.

СВЧ-ЭЛЕКТРОНИКА

(рис. 31). Вносимые ослабления в передающем режиме (включен вход Тх) заметно зависят от температуры окружающей среды (рис. 32а) и весьма мало от величины управляющего напряжения (рис. 32в). Сказанное относится и к зависимостям развязки от частоты (рис. 326, г). Кроме того, представляют интерес зависимости вносимого ослабления от входного уровня мощности в непрерывном (рис. 33а, в, д) и импульсном (рис. 33б, г, е) режимах. Графики IL(P_{вх}) представлены для трех значений входных частот (0,1; 1,0 и 2,8 ГГц) и нескольких значений температуры окружающей среды. В импульсном режиме на вход переключателя поступают импульсы длительностью 100 мкс, скважностью Q=10%. Весьма информативными являются также зависимости $IL(P_{_{\rm BX}})$, полученные при работе с импульсными сигналами (T_и=100 мкс, Q=10%), на разных

Рис. 31. Принципиальные схемы нитрид-галлиевых переключателей компании UMS: а - CHS7012-99F; б - CHS8618-99F

Таблица 11. Нитрид-галлиевые SPDT-переключатели в интегральном исполнении

Компания	Модель	Диапазон частот, ГГц	Р _{вх} , Вт	IL, дБ	Iso, дБ	Т _п , нс	Т _{on} , нс	Т _{оff} , нс
Qorvo	QPC1005	0,15-2,8	60	0,7	30	30	-	-
Qorvo	TGS2354	0,5-6,0	40	0,8	26	<50	<50	<50
Qorvo	TGS2355-SM	0,5-6,0	100	1,1	40	<50	-	-
Qorvo	RFSW2100D	0,03-6,0	69	0,25	60	40	-	-
Qorvo	QPC2040	8,0-12,0	10	1,2	30	35	-	-
METDA Semiconductors	BW-138	8,0-12,0	40	0,8	30	-	-	-
Qorvo	TGS2352-2	0,1-12,0	25	1,0	35	<35	31	18
UMS	CHS7012-99F	0-12,0	13	1,4	35	20	20	20
UMS	CHS8618-99F	6,0-18,0	<20	1,3	34	30	30	30
Qorvo	TGS2353-2	0,5-18,0	12,5	1,5	30	<35	31	18
Northrop Grumman	SDN109	0-20,0	>4	1,1	35	-	-	-
Northrop Grumman	SDN106	0-40,0	>4	1,5	35	-	-	-

частотах (рис. 34а) и при различных управляющих напряжениях (рис. 346). Измеренные для переключателей TGS2355 зависимости компрессионных мощностей $P_{\rm комп}$ от уровня мощности импульсного ($T_{\rm H}$ =20 мкс, Q=10%) сигнала дают представление об их изменениях при различных частотах входного сигнала (рис. 35а, б), вариациях температуры (рис. 35в) и управляющего напряжения (рис. 35г). Отметим также, что уровень вносимых ослаблений в передающем (RF₁) и приемном (RF₂) каналах практически одинаков и мало зависит от входного уровня мощности (рис. 36).

Линейку нитрид-галлиевых переключателей выпустила российская компания Электрон-Маш. В диапазонах частот до 6 и 12 ГГц эти изделия обеспечивают максимальную мощность более 20 Вт и вносимые ослабления 0,8 и 1,2 дБ соответственно. Развязка в обеих микросхемах превышает 30 дБ. В мае 2020 года компания Qorvo вышла на рынок с нитрид-галлиевым приемопередающим модулем QPM1002, предназначенным для использования в РЛС Х-диапазона (8,5–10,5 ГГц). Микросхема включает в себя Rx/Tx-переключатель, малошумящий и мощный усилители. Малошумящий усилитель с коэффициентом шума 2,2 дБ обладает усилением 25 дБ, которое может регулироваться. Мощный усилитель может иметь малосигнальный коэффициент усиления 33 и 25 дБ, при этом в антенне обеспечивается мощность до 2 Вт. Микросхема QPM1002 выполнена в QFN-корпусе размером 5 × 5 мм и изготовлена по технологическому процессу QGaN25 0,25 мкм GaN-on-SiC. Микросхема может работать в широком диапазоне температур в фазированных антенных решетках радиолокаторов Х-диапазона.

Представляет также интерес разработанная компанией ОММІС для космических применений интегральная

Рис. 32. Частотные характеристики нитрид-галлиевого переключателя QPC1005 (компания Qorvo): а, б – зависимости IL(*f*) и Iso(*f*) при вариациях температуры; в, г – зависимости IL(*f*) и Iso(*f*) при вариациях управляющего напряжения

Рис. 33. Зависимости вносимого ослабления IL от мощности входного сигнала Р_{вх} в непрерывном (CW) (а, в, д) и импульсном (б, г, е) режимах на частотах: а, б – *f*=0,15 ГГц; в, г – *f*=1 ГГц; д, е – *f*=2,8 ГГц (для переключателя QPC1005 компании Qorvo)

Рис. 34. Зависимости ослабления IL в передающем канале микросхемы QPC1005 от входной мощности P_{вх} при работе в импульсном режиме: а – для различных частот; б – для различных управляющих напряжений V_{ν2}

Рис. 35. Зависимости компрессионных мощностей от уровня мощности (импульсного (T_н=20 мкс, Q=10%)) входного сигнала в микросхеме TCS2355 (компания Qorvo): а, б – для различных частот; в – для различных температур; г – для различных управляющих напряжений

Компания	Модель	Диапазон частот, ГГц	P _{bx} , Bt	IIP3, дБм	IL, дБ	Iso (RF _c -RF ₁ (RF ₂)), дБ	Т _п , мкс	Т _{оп} , мкс	Т _{оff} , мкс
RFcore	RSW002050H50F	0,02-0,50	50-100	-	0,2-0,4	80	-	3	-
RFcore	RSW1020H54D	1,0-2,0	200	-	0,5	40	-	2	-
RFcore	RSW0525H50F	0,5-2,5	<100	-	0,5	70	-	3	1,5
RFcore	RSW2030H54D	2,0-3,0	200	-	0,75	>30	-	2	-
RFcore	RSW1030H50F	1,0-3,0	<100	-	0,65	60	-	3	-
RF-Lambda	RFSP2TR5M06G	0,5-6,0	100 (Р _{0,1дБимп})	50	1,1-1,6	38	0,1	_	-
RF-Lambda	RFSP2TRD2C06G	0-6,0	40 (Р _{0,1дБ})	55	0,8-1,1	37-28	0,1	-	-
RF-Lambda	RFSP2TRD2C18G	0-18,0	10 (Р _{0,1дБ})	42-43	0,8-1,7	45-25	0,1	_	-

Таблица 12. Нитрид-галлиевые SPDT-переключатели в модульном исполнении

схема CGY2750UH/C, в которую входят Rx/Tx SPDT-переключатель, малошумящий и мощный усилители (рис. 37а). Изделие выпускается в бескорпусном исполнении (рис. 37б) и обеспечивает выходную мощность 3,2 Вт в диапазоне частот 26–34 ГГц. Включенный в нее МШУ имеет усиление 20 дБ и коэффициент шума 3 дБ. Такой же уровень характеристик достигается и в приемопередающем модуле (рис. 37в), созданном на основе этой микросхемы. Размер модуля 2" × 2".

Почти одновременно с появлением интегральных GaN-переключателей были разработаны и представлены на рынке модульные GaN SPDT-изделия (табл. 12).

Рис. 36. Зависимости IL (P_{вх}) в передающем (Tx) и приемном (Rx) каналах переключателя QPC1005 при импульсном входном сигнале

Рис. 38. Сигнал на выходе RF_c нитрид-галлиевого модульного SPDT-переключателя RSW0525H50F (компания RFcore) при подаче на его входы RF₁ и RF₂ непрерывных колебаний: а – включение; б – выключение

Заметный вклад в развитие этих изделий был внесен компаниями RFcore и RF-Lambda. Модульные изделия (табл. 12) отличаются от интегральных (табл. 11) несколько большей мощностью и существенно меньшей скоростью коммутации. По остальным характеристикам модульные изделия сравнимы с интегральными. Процессы включения/выключения таких переключателей (рис. 38) мало

Рис. 37. Упрощенная структура нитрид-галлиевой микросхемы CGY2750UH/C1 компании OMMIC (а), топология кристалла (б) и приемопередающий модуль на ее основе (в)

отличаются от аналогичных процессов в переключателях, выполненных по другим технологиям.

ЛИТЕРАТУРА

- Kameche M., Drozdovski N.V. GaAs-, InP- and GaN HEMTbased Microwave Control Devices: What is Best and Why // Microwave Journal. 2005. May. PP. 164–180.
- Kao Y.-Y., Hung S.-H., Chen H.-Y. et al. Fully Integrated GaN-on-Silicon Gate Driver and GaN Switch With Temperature-Compensated Fast Turn-on Technique for Achieving Switching Frequency of 50 MHz and Slew Rate 118.3 V/Ns // IEEE Journal of Solid State Circuits. 2021. V. 56. No. 12. PP. 3619–3627.

ИНТЕЛЛЕКТ. КАЧЕСТВО.

АО «МИКРОВОЛНОВЫЕ СИСТЕМЫ» Москва, Щелковское шоссе, д.5, стр.1 Тел. (499) 644-21-03, (499) 644-25-62 (многоканальный) Факс +7(499) 644-19-70 E-mail: mwsystems@mwsystems.ru www.mwsystems.ru

- СОВРЕМЕННОЕ ПРОИЗВОДСТВО И ТЕХНОЛОГИИ
- ОПТИМАЛЬНОЕ СООТНОШЕНИЕ ЦЕНА/КАЧЕСТВО

ПОЛНЫЙ СПЕКТР УСЛУГ ПО ПРОЕКТИРОВАНИЮ И ПРОИЗВОДСТВУ МОНОЛИТНЫХ И ГИБРИДНЫХ ИНТЕГРАЛЬНЫХ СХЕМ, ТВЕРДОТЕЛЬНЫХ МОДУЛЕЙ, МНОГОФУНКЦИОНАЛЬНЫХ СВЧ-УСТРОЙСТВ И БЛОКОВ РЭА (0,3 - 22 ГГц)

АКЦИОНЕРНОЕ ОБЩЕСТВО «МИКРОВОЛНОВЫЕ СИСТЕМЫ»

