Антенные переключатели

Часть 4

В. Кочемасов, к. т. н.¹, А. Сафин, к. т. н.³, С. Дингес, к. т. н.³

УДК 621.389 | BAK 2.2.2

В первой, второй и третьей частях статьи, опубликованных в седьмом, восьмом и девятом номерах журнала «ЭЛЕКТРОНИКА: Наука, Технология, Бизнес» за 2022 год, было рассказано о различных антенных приемопередающих переключателях. В данном номере рассматривается еще один тип таких переключателей.

ИНТЕГРАЛЬНЫЕ ПРИЕМОПЕРЕДАЮЩИЕ ПЕРЕКЛЮЧАТЕЛИ, ВЫПОЛНЕННЫЕ ПО КМОП-ТЕХНОЛОГИЯМ

К настоящему времени КМОП-переключатели в значительной степени вытеснили с рынка мобильной связи изделия, выполненные по другим технологиям. Среди используемых КМОП-технологий можно назвать BiCMOS, стандартную (bulk) КМОП, КМОП-технологии кремний на изоляторе (КНИ) и кремний на сапфире (КНС), а также другие КМОП-процессы, запатентованные рядом производителей. Компании NXP Semiconductors, pSemi, Infineon, IDT, Mini-Circuits, Skyworks Solutions, Qorvo, Analog Devices (табл. 13, 14) закрыли все потребности рынка мобильной телефонии, включая стандарт 4G, а компании Analog Devices, pSemi, Custom MMIC (табл. 15) эффективно продвигают мобильные изделия, выполненные по стандартам 5G и 6G.

Рис. 39. Упрощенные схемы последовательно-параллельных SPDT-переключателей в КМОП-исполнении: a – [19]; б – [20]; в – [21]

¹ ООО «Радиокомп», генеральный директор, vkochemasov@radiocomp.ru

² НИУ «МЭИ», заведующий кафедрой формирования и обработки радиосигналов, arsafin@gmail.com.

³ МТУСИ, доцент кафедры радиооборудования и схемотехники.

СВЧ-ЭЛЕКТРОНИКА

Модель	Диапазон частот, ГГц	Р _{вх} , дБм	IIP3, дБм	IL,	дБ		Iso, дБ	T _{on} ,	T_{off} ,	T _{set} ,	
				$RF_1 - RF_c$	$RF_2 - RF_c$	$RF_1 - RF_c$	$RF_2 - RF_c$	$RF_1 - RF_2$	МКС	МКС	МКС
PE42510A	0,03-2,0	45,4 (Р _{1дБ})	-	0,45-1,70	0,7-1,8	29	29	-	40	40	-
PE42742	0,005-2,2	32-26,5 (Р _{1дБ})	53	0,45-1,70	0,7-1,8	74-57	73-55	94-53	3	3	-
PE42820	0,03-2,7	45,5-44,5 (Р _{0,1дБ})	85-81	0,3-0,7	0,3-0,7	-	-	35-24	15	15	30
PE42823	0,7-6,0	46-43 (Р _{1дБ})	70	0,25-0,53	0,39-1,28	48-23	59-31	-	0,62	0,62	0,58
PE42423	0,1-6,0	39,5 (Р _{0,1дБ})	65	0,80-0,95	0,80-0,95	47-43	47-43	51-41	0,5	0,5	-
PE42426	0,005-6,0	40 (P _{0,1дБ})	83	0,30-0,75	0,30-0,75	33-20	33-20	33-20	35	35	-
PE95420	0,001-8,5	33 (Р _{1дБ})	60	0,77-1,38	0,78-1,38	75,6-38	75,4-38	86,5-27,8	0,7	0,3	-

Таблица 13. SPDT-переключатели по технологии КМОП КНС, выпускаемые компанией pSemi

Таблица 14. SPDT-переключатели, выполненные по технологии КМОП КНИ

Компания	Модель	Диапазон частот, ГГц	Р _{вх} , дБм	IIP3, дБм	IL, дБ	Iso, дБ	Т _г , нс	Т _f , нс	Т _{оп} , нс	Т _{оff} , нс	Т _{set} , нс	V _{гт} *, мВ
Skyworks Solutions	SKY13472-460LF	0,1-3,0	39 (Р _{о,1дБ})	68	0,3-0,4	40-30	-	-	1600	1600	-	-
Qorvo	QPC3024	0,005-3,0	36 (Р _{1дБ})	61	0,38-1,4	75-45	-	-	1500	1500	3800	-
Analog Devices	ADRF5130	0,7-3,5	46 (Р _{о,1дБ})	68-65	0,6-0,7	50-41	155	155	750	750	1800	-
Qorvo	QPC3025	0,03-4,2	45,5-44,0 (Р _{0,1дБ})	74	0,35-0,41	46-29	-	-	5800	4700	8580	-
Analog Devices	HMC8038	0,1-6,0	36 (Р _{1дБ})	60	0,7-0,9	70-51	60	60	150	150	170	-
IDT	F2977	0,03-6,0	40 (P _{0,1дБ})	77	0,33-0,45	48-26	-	-	<600	-	-	12
Mini- Circuits	JSW2-63DR+	0,005-6,0	35 (Р _{о,1дБ})	56-62	0,33-0,57	46-21	500	700	1900	1700	-	3
Qorvo	RFSW6224	0,005-6,0	36 (Р _{1дБ})	65	0,55-1,10	80-48	-	-	250	250	1500	-
IDT	F2932	0,05-8,0	33,2-35,3 (Р _{1дБ})	<64	0,68-1,60	86-37	-	-	210	115	225	12
IDT	F2923	0,0003-8,0	32 (P _{1дБ})	66-52	0,43-1,12	77-29	-	-	600	500	675	-

V_{FT} – напряжение видеопросачивания

Таблица 15. SPDT-переключатели, выполненные по технологиям КМОП КНИ и КНС, работающие в широком диапазоне рабочих частот

Компа- ния	Модель	Диапазон частот, ГГц	Р _{вх} , дБм	ШРЗ, дБм	IL, дБ	Iso, дБ		Т _г ,	T _f ,	T _{on} ,	T_{off} ,	T_{set}^{*} ,
						$RF_c - RF_1 / RF_2$	RF ₁ - RF ₂	нс	нс	нс	нс	нс
pSemi	PE42521	9 кГц - 13,0	39,5-37,5 (Р _{0,1дБ})	65	0,60- 1,85	90-17	90-17	-	-	500	500	2000
pSemi	PE42522	9 кГц - 26,5	33-30 (Р _{0,1дБ})	59	0,7-5,3	73-22	80-20	-	-	3000	3000	7000
Custom MMIC	CMD196	0-28,0	23 (Р _{1дБ})	37-38	1,75	50-35	50-35	1,8	1,8	11	4	-
Analog Devices	ADRF5020	0,1-30,0	28 (Р _{1дБ})	52	1,2-2,0	65-60	70-65	2	2	10	10	20
Analog Devices	ADRF5021	9 кГц - 30,0	28 (Р _{1дБ})	52	1,1-2,0	65-60	70-65	1000	1000	1100	1100	10000
pSemi	PE42524	0,01-40,0	32,5-26 (Р _{1дБ})	48-52	0,6-5,5	84-33	84-33	55	55	225	225	840
Analog Devices	ADRF5301	35,0-44,0	37 (Р _{0,1дБ})	52	1,8	28	-	15	15	35	35	50
Analog Devices	ADRF5024	0,1-44,0	27,5 (Р _{1дБ})	50	1,0-1,7	42-35	47-38	2	2	10	10	22
Analog Devices	ADRF5025	9 кГц - 44,0	27,5 (Р _{1дБ})	50	0,9-1,6	42-35	48-40	600	600	1700	1700	4200
pSemi	PE42525	9 кГц - 60,0	23-35 (Р _{1лБ})	49-46	0,9-2,7	80-36	80-36	3	3	8	8	48

Время установления $\mathrm{T}_{\mathrm{vrr}}$, измеренное по достижении установившегося значения с точностью 0,05 дБ.

Рис. 40. Упрощенная схема SPDT-переключателя последовательно-параллельного типа, работающего по принципу «бегущей волны» [25], на базе переключательных структур S (б) и P (в), каждая на четырех полевых транзисторах

Рис. 41. Упрощенная схема симметричного SPDTпереключателя с различным выполнением передающего и приемного каналов [26]. V_{Tx}, V_{Rx} – управляющие напряжения

КМОП-изделия в основном выполняются по симметричным (рис. 39 [19–21]) схемам, чаще всего на основе последовательно-параллельных структур и отличаются лишь сложностью реализации. Промышленно выпускаемые переключатели в основном реализуются по симметричным схемам (см., например, data sheets на изделия QPC3024, QPC3025, BGS12PL6). Несмотря на симметричность используемых схемотехнических решений, вносимые ослабления между каналами Tx – Ант и Ант – Rx, а также развязки между каналами Tx – Ант, Ант – Tx, Ант – Rx, Rx – Ант, Tx – Rx и Rx – Tx могут существенно различаться.

Частотный диапазон изделий, выполненных по КМОП-технологиям, постоянно расширяется [22, 23, 24]. Например, SPDT-переключатель [23] в диапазоне частот 75–110 ГГц обеспечил следующие параметры: IL < 6,3 дБ (4,5 дБ на частоте 94 ГГц), Iso > 20 дБ (48 дБ на ча $стоте 94 ГГц), <math>P_{IдB}$ =11,2 дБм (на частоте 77 ГГц) и 11,0 дБм (на частоте 94 ГГц).

Весьма сложная схема симметричного переключателя (рис. 40а) реализована с использованием принципа «бегущей волны», причем последовательно и параллельно включенные транзисторы заменены наборами S (рис. 40б) и P (рис. 40в), каждый из четырех транзисторов [25].

Требуемая во многих случаях неидентичность характеристик передающего и приемного каналов в симметричном последовательно-параллельном переключателе (рис. 41) обеспечивается заменой последовательного транзистора в передающем канале и параллельного транзистора в приемном канале наборами из трех транзисторов [26].

Неидентичность каналов может быть также достигнута применением асимметричных переключателей. Так, в [27] приведена схема переключателя (рис. 42), в передающем канале которого используется последовательное включение транзистора, а в приемном – параллельное.

КМОП-переключатели, работающие в диапазоне частот до 10 ГГц, используются в мобильной телефонии, базовых станциях и ретрансляторах стандартов 2G, 3G, 4G различного назначения (ISM, GSM, WiMAX, WCDMA, LTE, TDD, 802 11a/b/g/n WLANs), в кабельных (CATV) и спутниковых (SATV) системах, а также в качестве экономически эффективной замены мощных ріп-диодных переключателей. Допустимые коммутируемые мощности в КМОП-изделиях прежде всего зависят от частоты. Значение этой мощности в диапазоне частот до 6 ГГц достигает 40 Вт (табл. 13, 14), а на частотах 40–60 ГГц не превышает 10 Вт (табл. 15).

Одной из первых на рынок КМОП-переключателей вышла компания NXP Semiconductors с BiCMOS-изделиями SA630 и SA58643. Вносимые ослабления в этих

Рис. 42. Упрощенная схема несимметричного SPDTпереключателя с последовательным включением полевого транзистора в передающем канале и параллельным включением полевого транзистора в приемном канале

Рис. 43. Зависимости IL(f) в переключателях SA630, SA58643: а – в каналах Тх и Rx; б – при вариациях температуры; в – при изменении напряжения питания

Рис. 44. Компрессионная мощность Р_{ідБ} в зависимости от частоты и напряжения питания (а) и характеристики IIP2, IIP3 в зависимости от напряжения питания (б) в переключателях SA630 и SA58643

переключателях в передающем Tx и приемном Rx каналах практически одинаковы (рис. 43а), но подвержены некоторым изменениям при вариациях температуры окружающей среды и напряжения питания (рис. 43б, в). Весьма существенно в таких изделиях зависят от напряжения питания компрессионная мощность $P_{I_{I\!I\!I\!I\!I\!I}}$ и характеристики IP2, IP3 (рис. 44а, б). Время включения T_{on} в этих переключателях практически вдвое превышает время выключения T_{off} , а время нарастания T_r почти втрое больше времени спада T_f (рис. 45).

Линейку переключателей (BGS12PN10, BGS12LP6, BGS12S3N6 и др.), выполненных по запатентованной МОПтехнологии и стандартной КМОП-технологии продвигает компания Infineon. Разработанная ею микросхема

Рис. 45. Формирование радиоимпульсов из непрерывного колебания в переключателях SA630 и SA58643

ВGS12PN10 может использоваться в EDGE/C2K/LTE/ WCDMA/SVLTE применениях в качестве приемопередающего переключателя. Вносимое ослабление IL(f) в диапазоне частот 0,5–6,0 ГГц меняется от 0,13 до 0,88 дБ (рис. 46а), как в передающем (Tx – Ант), так и в приемном (Ант – Rx) каналах. Развязки Iso (Tx – Ант) и Iso (Rx – Ант), показанные красным цветом, практически одинаковы и с ростом частоты уменьшаются от 40 до 10 дБ (рис. 466). При этом развязки между передающим и приемным каналами Iso (Tx – Rx) и Iso (Rx – Tx), показанные синим цветом, также одинаковы, но отличаются от развязок Iso (Tx – Ант) и Iso (Rx – Ант) весьма существенно (рис. 466).

Рис. 46. Характеристики переключателя BGS12PN10: а – IL(f); б – Iso(f); в – IL(P_{вх}); г – уровни второй (H₂) и третьей (H₃) гармоник в зависимости от входного уровня мощности P_{вх}

Рис. 47. Зависимость вносимых потерь от частоты в микросхеме F2977 при различных температурах и напряжениях питания в передающем (а) и приемном (б) каналах

Рис. 48. Развязка Iso(f) между каналами: а – RF₁ – RF_c (RF₂ включен); б – RF₂ – RF_c (RF₁ включен); в – RF₁ – RF₂ (RF₁ включен); г – RF₂ – RF₁(RF₂ включен)

СВЧ-ЭЛЕКТРОНИКА

Рис. 49. Формирование частотно-манипулированных сигналов на выходе RF_c переключателя F2923 при подаче на его входы RF₁ и RF₂ различающихся по частоте колебаний: а, б – T = 25 °C; в, г – T= –40 °C

Рис. 50. Зависимости компрессионной мощности Р_{0,1дБ} от частоты в переключателе ADRF5132: а – в различных каналах; б – при различных температурах

Рис. 51. Зависимости компрессионной мощности Р_{комп} от частоты в переключателе F2912 в нижней (а, в) и верхней (б, г) частях рабочего диапазона частот при вариациях температуры и напряжений питания

Рис. 52. Зависимость компрессионной мощности Р_{комп} от входной Р_{вх} в переключателе F2933 (компания IDT) при различных температурах

Их уровень в диапазоне частот 0,5–6,0 ГГц снижается с 43 до 17 дБ. Зависимости вносимых потерь от входной мощности $IL(P_{\rm BX})$ при значениях $P_{\rm BX}$ меньше допустимых практически неизменны, но зависят от температуры и частоты сигнала (рис. 46в). Весьма существенно от входной мощности и частоты зависят уровни 2-й и 3-й гармоник (рис. 46г), которые при изменении входной мощности от 20 до 38 дБм меняются от –100...–90 дБ до –56...–45 дБ.

Запатентованную КМОП-технологию использует и компания IDT, выпускающая широкую линейку переключателей (F2912, F2923, F2977 и др.). Зависимости IL(f) в передающем (рис. 47а) и приемном (рис. 47б) каналах переключателя F2977 при различных температурах окружающей среды и напряжениях питания отличаются не очень сильно. При этих же условиях практически не отличаются и зависимости Iso (Tx – Ант), Iso (Rx – Ант), Iso (Tx – Rx) и Iso (Rx – Tx) (рис. 48а–г). Приведенные в data sheets на микросхему F2923 осциллограммы иллюстрируют процесс формирования частотно-манипулированного сигнала на выходе

ИНТЕЛЛЕКТ. КАЧЕСТВО.

АО «МИКРОВОЛНОВЫЕ СИСТЕМЫ» Москва, Щелковское шоссе, д.5, стр.1 Тел. (499) 644-21-03, (499) 644-25-62 (многоканальный) Факс +7(499) 644-19-70 E-mail: mwsystems@mwsystems.ru www.mwsystems.ru

- СОВРЕМЕННОЕ ПРОИЗВОДСТВО И ТЕХНОЛОГИИ
- ОПТИМАЛЬНОЕ СООТНОШЕНИЕ ЦЕНА/КАЧЕСТВО

ПОЛНЫЙ СПЕКТР УСЛУГ ПО ПРОЕКТИРОВАНИЮ И ПРОИЗВОДСТВУ МОНОЛИТНЫХ И ГИБРИДНЫХ ИНТЕГРАЛЬНЫХ СХЕМ, ТВЕРДОТЕЛЬНЫХ МОДУЛЕЙ, МНОГОФУНКЦИОНАЛЬНЫХ СВЧ-УСТРОЙСТВ И БЛОКОВ РЭА (0,3 - 22 ГГц)

АКЦИОНЕРНОЕ ОБЩЕСТВО «МИКРОВОЛНОВЫЕ СИСТЕМЫ»

Рис. 53. Показатели линейности IIP3: а – микросхема F2933, передающий канал; б – микросхема F2933, приемный канал; в – микросхема RFSW6224

RF_cпри подаче на входы RF₁ и RF₂ непрерывных колебаний постоянной частоты. Эти осциллограммы (рис. 49) свидетельствуют об идентичности обоих каналов и об отсутствии заметного влияния температуры окружающей среды на вид частотно-манипулированного сигнала.

Компрессионная мощность $P_{0,1\text{дБ}}$ в обоих каналах переключателя ADRF5132 компании Analog Devices практически одинакова и мало меняется по диапазону (рис. 50а). При этом изменение температуры заметно влияет на ее уровень (рис. 50б). В низкочастотной области компрессионная мощность существенно (рис. 51а, в) зависит от частоты. В этой области частот ее уровень снижается на 15–20 дБ относительно значений на высоких частотах (рис. 516, г).

У переключателя F2933 (компания IDT) в зоне рабочих входных мощностей компрессионная мощность $P_{1,ab}$ в широком диапазоне температур (-40...105 °C) меняется не более чем на 0,05 дБ (рис. 52). Величина температуры в данном случае определяет предельно допустимое значение входной и компрессионной мощностей. Слабо зависит от температуры и напряжения питания характеризующий линейность переключателя показатель IIP3 (рис. 53а, б). Его значение в обоих каналах в широком диапазоне частот меняется в пределах 5–6 дБ. Подтверждают сказанное о характеристиках IIP3 в микросхеме F2933 и данные,

Рис. 54. Зависимости IL(f) в переключателе PE42525 при вариациях температуры (a) и напряжения (б)

Рис. 55. Развязки между входами RF_x – RF_x(а, в) и RF_c – RF_x(б, г) при вариации температуры (а, б) и напряжения (в, г) в переключателе PE42525

приведенные в data sheets на микросхему RFSW6224. Зависимости IIP3 от частоты при различных температурах окружающей среды и напряжениях питания (рис. 53в) позволяют сделать вывод о том, что это значение IIP3

Рис. 56. Характер изменения предельных мощностей $P_{_{\rm H}}$, $P_{_{_{\rm MMI}}}$, $P_{_{\rm I\!A\!B}}$ в зависимости от частоты в микросхеме PE42524

в первую очередь зависит от частоты, а другие факторы на этом показателе практически не сказываются.

Характер зависимостей IL(f) и Iso(f) в переключателях, выполненных по технологии кремний на сапфире, мало отличается от тех, что выполнены по стандартным (bulk) или КНИ технологиям. Зависимости IL(f) в переключателе PE42525 в широком диапазоне температур меняются весьма слабо (рис. 54а), а от управляющего напряжения вообще не зависят (рис. 546). В еще меньшей степени от этих факторов зависит развязка Iso(f) между каналами (рис. 55а–г).

В целом же отметим, что рис. 47 и 48 очень мало отличаются от рис. 54 и 55, несмотря на то, что рабочий диапазон переключателя PE42525 ровно на порядок превосходит рабочий диапазон частот переключателя F2977.

Рассмотренные в этом разделе SPDT Rx/Tx переключатели в КМОП-исполнении обеспечивают в диапазоне частот до 6 ГГц значительные уровни коммутируемых мощностей, закрывая тем самым потребности систем связи, включая стандарты 4G, а кроме этого, позволяют реализовать большие коммутируемые мощности

Рис. 57. Характер изменения Р_{о, ІдБ}, Р_{ІдБ}, IIP3 в зависимости от частоты в низкочастотной (до 1 ГГц) области (а, в, д) и в рабочем (до 30 ГГц) диапазоне частот (б, г, е). Т_{корп} – температура корпуса микросхемы

РАЗРАБОТКА И ПРОИЗВОДСТВО КЕРАМИЧЕСКИХ КОНДЕНСАТОРОВ И ПРОХОДНЫХ ФИЛЬТРОВ

СЕРИЙНАЯ ПРОДУКЦИЯ:

 многослойные конденсаторы: К10-17, К10-42, К10-47, К10-50, К10-54, К10-57, К10-79, КМК;
трубчатые конденсаторы: ТК, К10-51К, КТП, КТ-1Е;

• фильтры: Б14, Б23А, Б23Б, Б28, Б29, Б7-2, Б24.

НОВЕЙШИЕ РАЗРАБОТКИ:

варисторы ВР-18, ВР-19;
фильтры Б36;

 конденсаторы К10-89, К10-90.

K

www.kulon.spb.ru

Рис. 58. Зависимость вносимых потерь от уровня входной мощности в переключателе RFSW1012: а - на различных частотах, б - при различных температурах

на более высоких частотах, включая стандарты 5G и 6G. Ведущие позиции в этой области занимают компании Analog Devices (микросхема ADRF5301, 35–44 ГГц, $P_{\rm Makc}$ =5 Вт) и pSemi (микросхема PE42525, 9 кГц – 60 ГГц, $P_{\rm Makc}$ =3 Вт). Изделия со столь высокими рабочими частотами (табл. 15) могут быть использованы, помимо широкополосных систем связи, в радиолокаторах, системах радиоэлектронной борьбы, в тестовых и измерительных комплексах. Работу Rx/Tx SPDT-переключателей оценивают в том числе и по уровню допустимых входных мощностей, среди которых чаще всего используют непрерывные, импульсные и компрессионные мощности (рис. 56). Мощностные характеристики переключателей $P_{0,1 \mbox{\scriptsize nb}}$, $P_{1 \mbox{\scriptsize nb}}$, и показатель *IIP3*, характеризующий их линейность, весьма сильно меняются в диапазоне частот 5–100 МГц (рис. 57а, в, д), а в диапазоне частот до 30 ГГц практически не меняются (рис. 576, г, е).

Рис. 59. Зависимость IIP3 от частоты: а - микросхема QPC1022 (Qorvo); б - микросхема ADRF5130 (Analog Devices)

Иногда работу переключателей оценивают по характеристикам $IL(P_{\rm sx})$. Резкое возрастание вносимых потерь соответствует предельно допустимым значениям входных мощностей (рис. 58). Эти предельные значения входных мощностей зависят как от входной частоты (рис. 58а), так и от температуры окружающей среды (рис. 586). В разных моделях переключателей характер зависимости *IIP3* от частоты и температуры может существенно отличаться (рис. 59). Так, в изделии QPC1022 компании Qorvo *IIP3* действительно очень мало зависит от частоты и температуры (рис. 59а), а в переключателе ADRF5130 влияние частоты и температуры более чем заметно (рис. 596).

ЛИТЕРАТУРА

- Emam M., Kaamouchi M. E., Moussa M. S. et al. High Temperature Antenna Switches in 130 nm SOI Technology. 2007 IEEE International SOI Conference Proceedings. 2007. PP. 121–122.
- 20. **Ta C. M., Skafidas E., Evans R. J.** A 60-GHz CMOS Transmit / Receive Switch. 2007 IEEE Radio Frequency Integrated Circuits Symposium. PP. 725–728.
- 21. Li Z., Yoon H., Huang F.-J. et al. 5.8-GHz CMOS T/R Switches With High and Low Substrate Resictances in a 0.18-μm CMOS Process // IEEE Microwave and

Wireless Components Letters. 2003. V. 13. No. 1. PP. 1-3.

- Chao S.-F., Wang H., Su C.-Y. et al. A 50 to 94-GHz CMOS SPDT Switch Using Travelling-Wave Concept // IEEE Microwave and Wireless Components Letters. 2007. V. 17. No. 2. PP. 130–132.
- Chou C. C., Huang S. C., Lai W. C. et al. Design of W-Band High-Isolation T/R Switch. – Proceedings of the 45th European Microwave Conference. 2015, September. Paris, France. PP. 1084–1087.
- Lai R.-B., Kuo J.-J., Wang H. A 60–110 GHz Transmission-Line Integrated SPDT Switch in 90 nm CMOS Technology // IEEE Microwave and Wireless Components Letters. 2010. V. 20. No. 2. PP. 85–87.
- 25. **Yeh M.-C., Tsai Z.-M., Wang H.** A Miniature DC-to-50 GHz CMOS SPDT Distributed Switch. National Taiwan University, Taipei, 106, Taiwan.
- 26. Xu H., Kenneth K. O. A 31.3-dBm Bulk CMOS T/R Switch Using Stacked Transistors with Sub-Design-Rule Channel Length in Floated p-Wells // IEEE Journal of Solid-State Circuits. 2007. V. 42. No. 11. PP. 2528–2534.
- Park P., Shin D. H., Pekarik J. J. et al. A High-Linearity, LC-tuned, 24-GHz T/R Switch in 90-nm CMOS. – 2008 IEEE Radio Frequency Integrated Circuits Symposium. PP. 369–372.

