Антенные переключатели

Часть 5

В. Кочемасов, к. т. н.¹, А. Сафин, к. т. н.², С. Дингес, к. т. н.³

УДК 621.389 | ВАК 2.2.2

В первой, второй, третьей и четвертой частях статьи, опубликованных в седьмом, восьмом, девятом и десятом номерах журнала «ЭЛЕКТРОНИКА: Наука, Технология, Бизнес» за 2022 год, было рассказано о различных антенных приемопередающих переключателях. В данном номере рассматривается еще несколько типов таких переключателей.

ПЕРЕКЛЮЧАТЕЛИ ТИПА DIVERSITY

Одна из проблем, которую приходится решать при разработке средств мобильной связи — это замирания принимаемых сигналов. В мобильных системах связи в условиях городской застройки, лесистой или гористой местности на вход приемника поступают сигналы, различающиеся задержкой, а значит и фазой. В приемнике эти сигналы складываются как в фазе, так и в противофазе, что может приводить к значительному уменьшению уровня входных сигналов приемника. Создавая тем или иным способом отличия в поступающих на вход приемника сигналах, можно выделить из них наиболее сильный, который в дальнейшем можно использовать для обработки.

Рис. 60. Принципиальная схема 4-портового переключателя с функцией diversity

¹ ООО «Радиокомп», генеральный директор, vkochemasov@radiocomp.ru.

² НИУ «МЭИ», заведующий кафедрой формирования и обработки радиосигналов, arsafin@gmail.com.

³ МТУСИ, доцент кафедры радиооборудования и схемотехники.

Рис. 61. Прохождение сигнала между четырьмя портами DPDT-переключателя HMC393MS8G со свойством diversity

Отличия в сигналах можно обеспечить за счет пространственного разнесения двух или более антенн, изменения поляризации и других характеристик сигналов, зависящих в том числе и от используемых стандартов связи. Первый из названных способов является наиболее экономичным и применяется чаще всего. Простейшая реализация предполагает использование двух антенн, разнесенных на расстояние не менее $\lambda/2$. В этом случае к трем портам Tx, Rx, Анті добавляется еще один антенный порт Ант2 и переключатель становится 4-портовым. На английском языке такие переключатели называются antenna diversity switches. Свойством diversity обладает, например, переключатель (рис. 60), составленный из двух асимметричных SPSTструктур, реализованных по последовательно-параллельной схеме [12]. Передатчик Тх и приемник Rx в этом случае могут быть подключены к одной из двух антенн, причем в каждый момент времени может быть задействован только один из каналов: Тх – Анті, Тх – Ант2, Rх – Анті, Rx – Ант2. Аналогичный режим работы реализован и в переключателе HMC393MS8G, сделанном в интегральном исполнении на четырех SPST-структурах (рис. 61). В практической деятельности при создании мобильных телефонов первых поколений широкое применение нашли DPDT-переключатели (рис. 62), позволяющие одновременно обеспечивать работу двух каналов Тх — Ант1 и Rx – Ант2, а после коммутации переключателя поддерживать связь между Тх и Ант2 и Rx и Ант1.

Рис. 62. Схематичное изображение DPDT-переключателей, выполненных на SPST (а) и SPDT (б, в, г, д) структурах в двух положениях: слева – Тх подключен к Ант1, Rx подключен к Ант2; справа – Тх подключен к Ант2, Rx подключен к Ант1

Рис. 63. Rx/Tx переключатель, реализованный на трех SPDT-структурах (модель PSM-1G1R1G-TRSW-2500W, компания PMI, модель CMTRSW-1G1R1G-2K5, компания Corry Micronics)

Таким образом, DPDT-изделия обеспечивают свойство diversity и именно на них реализуются многие антенные переключатели. Эти переключатели могут быть выполнены как на SPST (рис. 62а), так и на SPDT (рис. 626-д) структурах. Обычно число таких структур равно 8 или 4.

Рис. 64. Конструктивное исполнение модульных DPDT-переключателей: а – XFU1, Cobham; б – F940H, Kratos; в – P9400A, Keysight Technologies

Компания	Модель	Диапазон частот, ГГц	Р _н , Вт	Р _и , Вт	Т _и , мкс	Q, %	IL, дБ	Iso, дБ	Т _п , мкс
Pasternack	PE7132	0,01-1,0	<2,0	-	-	-	<1,3	>80	0,1
Pasternack	PE71S6287	1,0-2,0	1,0	10	1	1	<1,0	>80	0,1
Comtech PST	AB-032	2,7-2,9	100	2000	100	-	0,8	27	1,0
Pasternack	PE71S6288	2,0-4,0	1,0	10	1	1	<1,2	>75	0,1
Cobham	XFC1	2,0-4,0	<1,0	-	-	-	<1,9	>75	0,1
АМС	SWN-TRA-MP	5,2-5,9	5,0	50	-	10	<1,5	>60	0,1
Pasternack	PE71S6289	4,0-8,0	10	10	1	1	<1,9	>75	0,1
АМС	SWN-2181-TRA	9,0-10,0	<0,5	10	1	-	<2,5	50	0,1
Pasternack	PE71S6290	8,0-12,0	0,5	-	-	-	<2,2	>70	0,1
Pasternack	PE71S6291	12,0-18,0	<0,5	-	-	-	<3,0	>65	0,1
PMI	SWN-2181-TRA-T	7,0-18,0	-	-	-	-	<5,0	>60	0,5
Narda-Miteq	XFER	2,0-18,0	0,2	-	-	-	1,8-2,6	70-55	0,05
Pasternack	PE7134	1,0-18,0	<0,5	-	-	-	<3,1	>65	0,1
Cobham	XFL1	0,5-18,0	<1,0	-	-	-	<1,0	>80	0,1
PMI	PXS-500M18G-60-SFF	0,5-18,0	<0,1	-	-	-	<3,0	>60	1,0
Kratos	F940H	0,5-18,0	0,5	75	1	-	<2,0	>60	0,03

Таблица 16. Характеристики модульных DPDT-переключателей, реализованных на кремниевых диодах

Однако, имеются примеры реализации DPDT-переключателей и на трех SPDT-структурах (рис. 62в). Подобная схема используется, например, в мощных DPDT-переключателях (рис. 63), продвигаемых на рынок компаниями PMI и Corry Micronics.

DPDT-переключатели, имеющие два входа и два выхода, относятся к матричным переключателям (blocking type switch matrix) и именно они стали основными при создании diversity antenna switches. В DPDT-переключателях возможны лишь два положения (режима). В первом из них выход передатчика Tx соединен с антенным портом Антl, а вход приемника Rx – с портом Ант2. Во втором режиме выход Tx соединен с антенным портом Ант2, а вход приемника Rx – с антенным портом Ант2.

Основными производителями модульных DPDT-переключателей по pin-диодной технологии являются компании Pasternack, PMI, AMC, Kratos, Cobham, Narda-Miteg, Comtech PST (табл. 16). Конструктивно эти переключатели между собой практически не различаются (рис. 64). Нижняя граница рабочего диапазона частот этих pin-диодных DPDT-переключателей не опускается ниже 500 МГц, а верхняя не превышает 18 ГГц. Допустимая входная мощность обычно находится в пределах 0,2-5,0 Вт, но может достигать и больших значений. Так, в переключателе AB-032, выпускаемом компанией Comtech PST, она достигает 100 Вт. При этом импульсная мощность в случае использования 100-мкс импульсов, проходящих через DPDT-переключатель, может достигать 2000 Вт. Развязка между портами в этих переключателях находится в пределах 60-80 дБ, а время коммутации не превосходит 0,03-1,0 мкс. Вносимые потери в изделии РЕ71S6287 компании Pasternack между четырьмя портами переключателей практически не различаются (рис. 65а), а уровни

Рис. 65. Характеристики модульного DPDT-переключателя PE71S6287: а – IL(f); 6 – Iso(f)

межпортовых развязок достигают 100 дБ (рис. 656). Эти DPDT-переключатели реализуются по схемам, представленным на рис. 62. Принципиальная схема кольцевого DPDT-переключателя на четырех SPDT-структурах

Компания	Модель	Диапазон частот, ГГц	Р _{макс} , Вт	ШРЗ, дБм	IL, дБ	Iso, дБ	Т _п , нс
Filtronic	FMS2017QFN	0,5-3,0	6,4	-	0,6	23	20
Analog Devices	HMC393MS8G	5,0-6,0	1,0 (P _{0,1дБ})	49	1,2	20	_
Skyworks Solutions	SKY13438-374LF	0,1-6,0	1,6	54-52	0,5-1,2	>24	160 (T _f)
Skyworks Solutions	SKY13411-274LF	0,1-6,0	1,6	50	0,5-0,9	-	70 (T _r)
Qorvo	TQS5202	0,1-6,0	3,2	50	0,80-0,95	-	_
Eudyna Devices	ES/EMM5322ZU	0,1-6,0	1,6	-	0,8-1,0	>20	_
Filtronic	FMS2007QFN	0-6,0	4,0	-	0,90-1,15	>25	30
Analog Devices	HMC427ALP3E	0-8,0	0,4 (P _{1дБ})	43	1,5-1,8	50-43	_
МАСОМ	MASWGM0001-DIE	2,0-14,0	0,3(P _{1дБ})	33	3,0	40	_

Таблица 17. Характеристики интегральных DPDT-переключателей, выполненных по технологии GaAs PHEMT

(рис. 66) содержит все необходимые цепи смещения и разделительные конденсаторы.

В мобильных телефонах первого поколения были успешно применены интегральные DPDT-переключатели, обладающие свойством diversity. Время создания этих мобильных телефонов совпало с появлением интегральных DPDT-переключателей по перспективной в то время GaAs-технологии на полевых транзисторах (рис. 67) [28]. Верхние значения рабочего диапазона частот в этих переключателях

Рис. 67. Упрощенная схема DPDT-переключателя на арсенид-галлиевых полевых транзисторах

Рис. 66. Принципиальная схема кольцевого модульного DPDT-переключателя F940H, выполненного на четырех последовательно-параллельных pin-диодных SPDT-структурах (голубым фоном показаны интегральные компоненты)

в основном не превышали 6 ГГц, а допустимая входная мощность находилась в пределах 1,6-6,4 Вт (табл. 17). Развязка между портами в этих переключателях (14-25 дБ) оставляет желать лучшего. Весьма полезными для разработчиков представляются зависимости (рис. 68), характеризующие работу арсенид-галлиевого переключателя FMS2017 при вариациях частоты (рис. 68а), входной мощности (рис. 686) и управляющего напряжения (рис. 68в).

DPDT-переключатели в КМОПисполнении производят компании Infineon, Qorvo, Skyworks Solutions, Custom MMIC (табл. 18). Максимальная рабочая частота этих переключа-

телей не превышает 12 ГГц, а максимально допустимая входная мощность — 8 Вт. Вносимое ослабление в диапазоне частот мало зависит от канала, по которому проходит радиосигнал (рис. 69а), но существенно меняется в диапазоне температур (рис. 69б). Развязка между портами DPDT-переключателя QPC6222 (рис. 70а, б) практически не зависит от пути прохождения сигнала. Не влияют на ее величину и вариации температуры (рис. 70в, г).

Зависимости компрессионных мощностей $P_{1 \mu b}$ и $P_{0,1 \mu b}$ от частоты в DPDT-переключателях отличаются друг от друга, но влияние температуры невелико (рис. 71а, б). Характеристики IIP3(f) существенно зависят от частоты и модели переключателя, но весьма слабо реагируют на изменения температуры (рис. 72а, б).

МНОГОПОЗИЦИОННЫЕ АНТЕННЫЕ ПЕРЕКЛЮЧАТЕЛИ

С появлением новых стандартов сотовой связи требования к антенным переключателям становились все сложнее и сложнее вследствие использования новых диапазонов частот, увеличения количества портов с подключенными к ним передатчиками Тх, приемниками Rx и трансиверами TRx, а также роста числа задействованных антенных излучателей. Для базовых станций мобильной связи и носимых радиосредств в этот период были разработаны

интегральные антенные переключатели на pin-диодах и GaN-транзисторах с весьма высокими коммутируемыми мощностями, а для мобильных телефонов – антенные переключатели по технологиям GaAs и KMOП.

Рис. 68. Характеристики интегрального DPDT-переключателя FMS2017, выполненного по технологии GaAs PHEMT: а – IL(f); б – IL(P_{вx}); в – IL(V_v)

Переключатели на pin-диодах

Количество мощных SPMT-переключателей на кремниевых pin-диодах, выпускаемых промышленностью, невелико. Их производят компании MACOM и Wei Bo Associates (табл. 19). Технические характеристики у них близки к характеристикам SPDT-изделий, которые выпускаются названными компаниями (табл. 4, 5). В некоторых изделиях этого типа (MSW3201-320, MSW3200-320) переключение может осуществляться в горячем режиме.

Рис. 69. Вносимое ослабление IL(f) в КМОПпереключателе QPC6222: а – в зависимости от пути прохождения сигнала; б – при различных температурах

Компания	Модель	Диапазон частот, ГГц	Р _{вх} , дБм	IIP3, дБм	IL, дБ	Iso, дБ	Т _п , мкс	Т,, мкс	Т _f , мкс	Т _{оп} , мкс	Т _{оff} , мкс
Infineon	BGS22W2L10	0,1-2,0	<26,0	65	0,22-0,39	35-27	-	0,35	-	0,6	-
Qorvo	QPC6222	0-2,7	<38,5	72	0,35-0,34	32-31	-	5	-	-	-
Skyworks Solutions	SKY13396-397LF	0,7-3,0	<39,0	63	0,4-0,6	25-17	-	3	3	-	3
Qorvo	QM11022	0-6,0	<39,0	77	0,26-0,28	34-35	-	1,8	-	_	_
Qorvo	QPC1217Q	0-6,0	<36,0	74,5	0,32-0,34	33,6-30,0	-	-	-	2,28	-
Custom MMIC	CMD272P3	0-10,0	<27,0	38	1,2-1,6	44-35	0,01	-	-	-	-
Custom MMIC	CMD273P3	0-12,0	<27,0	46-40	1,2-1,9	42-35	0,012	-	-	-	-

Таблица 18. Характеристики интегральных КМОП DPDT-переключателей

Рис. 70. Развязка *Iso(f)* в КМОП-переключателе QPC6222: а, б – между каналами RF₁, RF₂, RF₃ и RF₄; в, г – при различных температурах

Рис. 71. Компрессионные мощности Р_{0,1лБ} в переключателях СМD272P3 (а) и СМD273P3 (б) компании Custom MMIC

Рис. 72. Показатели линейности IIP3 в переключателях СМD272P3 (а) и СМD273P3 (б) компании Custom MMIC

Рис. 73. Принципиальные схемы SP3Tпереключателей на pin-диодах: а - общий анод (MASW-011030); б - общий катод (MASW-011032)

Компания	Модель	Тип ПК	Диапазон частот, ГГц	Р _{вх} , Вт	ШРЗ, дБм	IL, дБ	Iso, дБ	Т _п , мкс
Wei Bo Associates	MSW3T-3100-150	SP3T	0,05-1,0	100 200 (имп.)	65	0,4	53	-
МАСОМ	MSW3200-320	SP3T	0,02-1,0	100 500 (имп.)	65	0,4	47	3
МАСОМ	MSW-011032	SP3T	0,05-2,5	158	77	0,20-0,45	32-27	0,25
МАСОМ	MSW-011030	SP3T	0,03-3,0	158	62	0,15-0,35	50-40	0,8
Wei Bo Associates	MSW3T-3101-150	SP3T	0,4-4,0	100 200 (имп.)	65	0,6	34	-
МАСОМ	MSW3201-320	SP3T	0,4-4,5	100 500 (имп.)	65	0,6	35	1
МАСОМ	MASW-011040	SP4T	0,05-1,0	200-158	-	0,25-0,45	51-45	<3,5
Wei Bo Associates	MSW5T-0310-505	SP5T	0,03-1,0	100 200 (имп.)	80	0,8	40	-
Wei Bo Associates	MSW6T-6100-600	SP6T	0,002-0,03	200 320 (имп.)	65	0,25	25	-

Таблица 19. Характеристики мощных многопозиционных pin-диодных переключателей

Рис. 75. Структура интегрального арсенид-галлиевого SP3T-переключателя TQP4M3007, обеспечивающего прием/передачу CDMA-сигналов мобильной связи совместно с приемом GPS-сигналов. MУ – мощный усилитель, МШУ – малошумящий усилитель

Рис. 76. Упрощенная структура интегрального арсенидгаллиевого SP6Tпереключателя FMS2028 компании Filtronic

SP3T- и SP4T-переключатели обычно выполняются по последовательно-параллельной схеме и отличаются лишь направлением включения pin-диодов (рис. 73а, б). SP6T-переключатели MSW6T-6040-600 реализованы по последовательной схеме на шести pin-диодах с общим катодом (рис. 74). Во всех переключателях используются высоковольтные (до 180 В) pin-диоды, причем ряд изделий (MASW-011030, MASW-011032, MASW-011040) выполнены в 16- или 20-выводных HQFN-корпусах. Два переключателя – MSW320x-320 и MSWT6T-6040-600, – использующие керамическую и стеклянную подложки, соответственно, выпускаются в пластиковых корпусах с размерами 8,0×5,0×2,5 и 8,0×8,0×2,5 мм. Максимальная импульсная мощность 1000 Вт достигается в SP6T-переключателе MSW6T-6040-600. Все ріп-диодные переключатели отличаются высокой линейностью (табл. 19), которая, например, в переключателе MSW5T-0310-505 достигает 80 дБм. Pin-диодные переключатели применяются не только в связных, но и в радиолокационных системах коммерческого, промышленного и космического назначения.

Арсенид-галлиевые многопозиционные переключатели

В средствах мобильной связи, за исключением базовых станций, pin-диодные изделия в силу присущих им недостатков применения не нашли. Однако, по времени развитие систем мобильной телефонии совпало со становлением GaAs-технологии на полевых транзисторах. Именно по этой причине наряду с SPDT-переключателями на арсенид-галлиевых полевых транзисторах появились и многопозиционные изделия, обеспечивающие работу мобильных телефонов, базирующихся на различных стандартах связи (табл. 20). В числе производителей этой продукции были компании Skyworks Solutions, Filtronic, SuperApex, Qorvo, Anadigics, CEL, Atlanta Micro, UMS, Custom MMIC и др. Некоторые из этих изделий наряду с обеспечением связи позволяют принимать GPS-сигналы (рис. 75).

Некоторые многопозиционные переключатели, например модель FMS2028, имеющая антенный, два передающих и четыре приемных порта (рис. 76), обеспечивают в передающих каналах меньшие вносимые потери по сравнению с приемными каналами (рис. 77а). От вариаций температуры окружающей среды вносимые

Рис. 77. Вносимые ослабления в передающих (Tx₁, Tx₂) и приемных (Rx₁, Rx₂, Rx₃, Rx₄) каналах 6-позиционного арсенид-галлиевого переключателя FMS2028 компании Filtronic: а – в передающих и приемных каналах; б – в передающих каналах при различных температурах; в – в приемных каналах при различных температурах **Таблица 20.** Характеристики многопозиционных (SP3T...SP10T) арсенид-галиевых переключателей на полевых транзисторах

Компания	Модель	Тип ПК	Диапазон частот, ГГц	Р _{вх} , дБм	ШРЗ, дБм	IL, дБ	Iso, дБ	Т,, нс	Т _f , нс	Т _{оп} , нс	Т _{оff} , нс	Т _п , нс
Skyworks Solutions	SKY13309-370LF	SP3T	0,1-3,0	29 (P _{1дБ})	<45	0,6-0,5 (от RF _c до RF ₁ , RF ₂ , RF ₃)	25 (от RF _c до RF ₁ , RF ₂ , RF ₃)	50	18	55	20	-
CEL	CG2430X1	SP3T	0,1-6,0	31 (P _{1дБ})	55	0,4-0,6 (от RF _c до RF ₁ , RF ₂ , RF ₃)	33-25 (от RF _c до RF ₁ , RF ₂ , RF ₃)	-	-	-	-	80
Qorvo	RFSW6131	SP3T	0-6,0	27 (Р _{0,1дБ})	56	0,45-0,65	31–24 (от RF _c до RF ₁ , RF ₂ , RF ₃)	20	20	25	25	-
SuperApex	SAC3215	SP3T	0-8,0	27 (Р _{1дБ})	-	1,5	50	-	-	-	-	30
Filtronic	FMS2016 QFN-1	SP4T	0,5-2,5	<38	-	0,55-0,65	34-32	300	300	<1000	<1000	-
KCB Solutions	KCB826	SP4T	0,02-4,0	30 (Р _{1дБ})	47	0,9-1,5	55-38	21	21	125	125	-
Microsemi	MMS008PP3	SP4T	0-8,0	29 (Р _{1дБ})	45	1,2-1,7	55-43	10	10	85	35	-
SuperApex	SAC3223	SP4T	0-12,0	20 (Р _{1дБ})	38	2,1	35	-	-	-	-	43
Custom MMIC	CMD203C4	SP4T	0-20,0	21 (Р _{1дБ})	-	2,4	39	66	66	81	8	-
UMS	CHS2412-QDG	SP4T	23,0-26,0	23,5 (Р _{1дБ})	-	2,9	35	-	-	_	-	30
Custom MMIC	CMD235C4	SP5T	0-18,0	0,1 (Р _{0,1дБ})	-	2,5	44	-	-	-	-	60
Filtronic	FMS2028	SP6T	0,5-2,5	37 (Р _{0,1дБ})	-	4,0-0,4 (Tx) 0,73-1,0 (Rx)	28,5-21 (Tx-Tx) 47-42 (Tx-Rx) 28-22 (Rx-Rx)	<300	<300	<1000	<1000	-
Analog Devices	HMC252QS24	SP6T	0-3,0	24 (Р _{1дБ})	46	0,8-1,3	41-29	35	35	120	120	-
Custom MMIC	CMD236C4	SP6T	0-18,0	0,18 (P _{0,1дБ})	-	2,5	42	-	_	-		60
Filtronic	FMS2018	SP7T	0,5-2,5	< 40 (Р _{1дБ})	-	0,5-0,6 (Tx) 0,6-0,8 (Rx)	40-35 (Tx-Rx) 33-30 (Tx-Tx)	300	300	1000	1000	-
Atlanta Micro	AM6011	SP8T	0-10,0	+27 (Р _{1дБ})	40	1,0	>20	-	-	-	-	-
Skyworks Solutions	SKY13362-389LF	SP10T	0,4-2,7	<40 (Р _{1дБ})	95,5 (IIP2)	0,50-1,35	21-35	-	_	-	-	3 0 0 0

Рис. 78. Развязка между каналами в арсенид-галлиевом SP6T-переключателе FMS2028: а – между передающими и приемными каналами при включенных передающих каналах; б – между передающими каналами при включенных каналах Tx₁, Tx₂

ослабления в передающих и приемных каналах зависят мало (рис. 776, в). При этом развязки между передающими и приемными каналами достигают достаточно высоких значений (рис. 78). Типовой уровень второй и третьей гармоник в изделии FMS2018 составляет –70...–80 дБн. В микросхеме RFSW6131 (компания Qorvo) зависимости вносимых ослаблений от частоты для различных каналов различаются между собой незначительно (рис. 79а). В большей степени на вносимое ослабление влияет окружающая температура (рис. 79б). Развязки между

Рис. 79. Характеристики арсенид-галлиевого SP3T-переключателя RFSW6131 (компания Qorvo): а – IL(f) между различными каналами; б – IL(f) между RF_c и RF₁ при различных температурах; в, г – Iso(f) между различными каналами

Рис. 80. Характеристики IIP3(f) в арсенид-галлиевом SP3T-переключателе RFSW6131: а – при подключении второго и третьего каналов; б – при подключении первого канала и различных температурах

Рис. 81. Зависимости IL(P_{вх}) в арсенид-галлиевом SP3Tпереключателе RFSW6131 при различных температурах и управляющих напряжениях (включен третий канал)

входом RF_c и выходами каналов RF₁, RF₂, RF₃ 3-позиционного переключателя отличаются между собой лишь в верхней части частотного диапазона (рис. 79в). При этом существенно большим разнообразием отличаются развязки между выходами RF₁, RF₂, RF₃ (рис. 79г). Мало зависит от частоты и номера канала показатель линейности IIP3 (рис. 80а). Однако, температура окружающей среды оказывает на него весьма сильное влияние (рис. 80б). В значительной степени вносимое ослабление зависит от уровня входной мощности, температуры и управляющего напряжения (рис. 81). Так, изменение этого напряжения с 3 до 5 В практически вдвое увеличивает значение допустимой входной мощности.

Встречаются среди арсенид-галлиевых переключателей и модульные изделия. Примером могут служить 4-позиционные переключатели компании Pascall Electronics (1-10533) и Analog Devices (HMC-C071). Первый из них выполнен по технологии GaAs FET, а второй — по технологии GaAs PHEMT.

В целом применение GaAs-технологии для создания многопозиционных переключателей, используемых для передачи и приема сигналов, позволило создать значительное число изделий для мобильных средств связи с токами потребления и управления на два порядка меньшими, чем в изделиях на pin-диодах.

ЛИТЕРАТУРА

 Lee C.-H., Banerjee B., Laskar J. Novel T/R Switch Architectures for MIMO Applications. – 2004 IEEE MTT-S International Microwave Symposium Digest. PP. 1137–1140.

КНИГИ ИЗДАТЕЛЬСТВА «ТЕХНОСФЕРА»

Цена 1090 руб.

СИСТЕМЫ НА КРИСТАЛЛЕ СО ВСТРОЕННЫМИ АНТЕННАМИ НА НАНОГЕТЕРОСТРУКТУРАХ А³В⁵

М.: ТЕХНОСФЕРА, 2018. – 528 с. ISBN 978-5-94836-526-8

Под редакцией д. т. н., профессора П. П. Мальцева

В сборник вошли статьи сотрудников Федерального государственного автономного научного учреждения «Институт сверхвысокочастотной полупроводниковой электроники имени В. Г. Мокерова» Российской академии наук (ИСВЧПЭ РАН), опубликованные в период 2010–2017 гг. по новым направлениям исследований наногетероструктур А³В⁵ (арсенид галлия и нитрид галлия): расчет и моделирование систем на кристалле с интегрированными антеннами и усилителями для крайне высоких частот; создание фотопроводящих антенн для терагерцевых устройств.

Статьи использованы при выполнении работ по заказу Минобрнауки России в рамках: ФЦП «Развитие электронной компонентной базы и радиоэлектроники» на 2008–2015 годы, ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы, ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России» на 2007–2013 годы и на 2014–2020 годы.

КАК ЗАКАЗАТЬ НАШИ КНИГИ?

🖂 125319, Москва, а/я 91; 💺 +7 495 234-0110; 🛎 +7 495 956-3346; knigi@technosphera.ru, sales@technosphera.ru