sitemap
Наш сайт использует cookies. Продолжая просмотр, вы даёте согласие на обработку персональных данных и соглашаетесь с нашей
Политикой Конфиденциальности
Согласен
главная
eng
Поиск:
на сайте журнала
на всех сайтах РИЦ
Вход
Архив журнала
Журналы
Медиаданные
Редакционная политика
Реклама
Авторам
Контакты
© 2001-2025
РИЦ Техносфера
Все права защищены
Тел. +7 (495) 234-0110
Оферта
R&W
ISSN 1992-4178(print)
ISSN 1992-4186(online)
Книги по электронике
Статьи
Электроника НТБ #8/2025
Колонка Департамента радиоэлектронной промышленности
Электроника НТБ #6/2025
КОЛОНКА ДЕПАРТАМЕНТА РАДИОЭЛЕКТРОННОЙ ПРОМЫШЛЕННОСТИ
Репортажи
//
все
Электроника НТБ #3/2025
ВИЗИТ НА ПР-ВО АО «КРАСНОЗНАМЕНСКИЙ ЗАВОД ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ «АРСЕНАЛ»
Электроника НТБ #10/2024
ЛОКАЛИЗАЦИЯ ПРОИЗВОДСТВА ОБОРУДОВАНИЯ. ВИЗИТ НА ПРОИЗВОДСТВО ООО «ПРОТЕХ»
Новости
//
все новости
28.10.2025
Международная выставка «Интерполитех» стартовала в Москве
21.10.2025
Выставка Testing&Control 2025 открыла свои двери для специалистов
События
//
все события
до 31.10.2025
Международный форум-выставка «Российский промышленник - 2025». г.Санкт- Петербург
c 25.11.2025 до 27.11.2025
4-я Международная выставка-форум «Электроника России». г. Москва, МВЦ «Крокус Экспо»
Вход:
Ваш e-mail:
Пароль:
- запомнить меня
Регистрация
Забыли пароль?
Архив журнала:
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
Медиаданные:
О журнале
Учредитель
Издатель
Редакционный совет
Распространение_
Редакционная политика:
Редакционная политика РИЦ «ТЕХНОСФЕРА»
Реклама:
Отдел рекламы
В журнале
На сайте
Авторам:
Соискателям учёной степени
Требования к статьям
Контакты:
Распространение
Адрес
Редакция
Журналы:
Электроника НТБ
Наноиндустрия
Первая миля
Фотоника
Аналитика
Станкоинструмент
Книги по электронике
читать книгу
Ермаков О.Н.
Прикладная оптоэлектроника
читать книгу
Под редакцией Удда Э.
Волоконно-оптические датчики
читать книгу
Переверзев А.Л., Денисов А.Н., Куцев А.О., Соколовская М.М., Примаков Е.В., Рыжкова Д.В., Ливенцев Е.В., Д.В. Калеев, А.М. Силантьев
Полузаказные БИС на БМК серий 5503 и 5507. Лабораторные практикумы. Кн. 2. Проектирование цифровых устройств в САПР «Ковчег» с использованием Verilog HDL
Другие серии книг:
Мир электроники
Мир радиоэлектроники
Библиотека Института стратегий развития
Мир квантовых технологий
Мир математики
Мир физики и техники
Мир биологии и медицины
Мир химии
Мир наук о Земле
Мир материалов и технологий
Мир программирования
Мир связи
Мир строительства
Мир цифровой обработки
Мир экономики
Мир дизайна
Мир увлечений
Мир робототехники и мехатроники
Для кофейников
Библиотечка «КВАНТ»
Умный дом
Мировые бренды
Вне серий
Библиотека климатехника
Мир транспорта
Мир фотоники
Мир станкостроения
Мир метрологии
Мир энергетики
Книги, изданные при поддержке РФФИ
Тег "нитрид кремния"
Наноиндустрия #7-8/2023
Д.М.Моховиков, А.А.Гуляева, И.В.Кулинич, А.А.Таловская, А.С.Мырзахметов
ИНТЕГРАЛЬНО-ОПТИЧЕСКИЙ КОНВЕРТОР ПОЛЯРИЗАЦИИ НА ОСНОВЕ SiN
DOI:
https://doi.org/10.22184/1993-8578.2023.16.7-8.456.461
В данной работе представлены результаты исследования влияния геометрических параметров конструкции интегрально-оптического (ИО) конвертора поляризации, реализованный на основе гребенчатой волноводной структуры на нитриде кремния на изоляторе (НКНИ), на эффективность поворота поляризации и выходную оптическую мощность устройства. В результате чего была разработана математическая модель ИО конвертора поляризации с эффективностью поворота поляризации >96 % и выходной мощностью >98 %. Также была предложена конструкция ИО конвертора поляризации, с зеркально отраженной секцией поворота поляризации, что позволяет уменьшить влияние технологической ошибки воспроизводимости геометрии устройства до ±215 нм.
Электроника НТБ #2/2023
А. Махаринец, Л. Милешко
ЭЛЕКТРОЛИТИЧЕСКОЕ АНОДИРОВАНИЕ КРЕМНИЯ, КАРБИДА И НИТРИДА КРЕМНИЯ ДЛЯ ЦЕЛЕЙ НАНОТЕХНОЛОГИИ (ОБЗОР)
DOI: 10.22184/1992-4178.2023.223.2.88.90 Представлен анализ технологий формирования нанометровых анодных оксидных пленок (АОП) методом электролитического анодирования кремния, карбида и нитрида кремния. Приведены примеры использования таких технологий в микро- и наноэлектронике.
Фотоника #4/2022
А. А. Никитин, К. О. Воропаев, А. А. Ершов, И. А. Рябцев, А. В. Кондрашов, М. В. Парфенов, А. А. Семенов, А. В. Шамрай, Е. И. Теруков, А. В. Петров, А. Б. Устинов
Исследование технологии осаждения пленок нитрида кремния для применения в фотонных интегральных схемах
DOI: 10.22184/1993-7296.FRos.2022.16.4.296.304 Статья посвящена технологии изготовления оптических микроволноводов из нитрида кремния. Для изготовления волноведущих структур использовались кремниевые подложки с подслоем оксида кремния. На поверхности оксида кремния наносились пленки нитрида кремния методами плазмохимического газофазного осаждения и газофазного осаждения при пониженном давлении. Толщины пленок нитрида кремния изменялась в пределах от 710 до 730 нм в зависимости от технологии газофазного осаждения. Для создания волноведущих структур использовалась фотолитография и плазмохимическое травление. Ширина волноведущих структур варьировалась от 1 до 5 мкм с шагом 500 нм. На поверхности структур осаждался покрывной слой оксида кремния. В работе проведено исследование потерь на длине волны 1,55 мкм в волноведущих структурах, изготовленных обоими методами газофазного осаждения. Приведено сравнение методов осаждения, в результате чего показано, что разработанный метод плазмохимического газофазного осаждения обеспечивает существенное уменьшение потерь в структурах по сравнению с методом газофазного осаждения при пониженном давлении.
Аналитика #3/2021
А. А. Семенов, А. В. Лизунов, А. В. Глебов, Ф. В. Макаров, Л. А. Карпюк
Перспективы использования нитрида кремния, модифицированного изотопом азот-15 высокого обогащения, при изготовлении оболочек ТВЭЛов
DOI: 10.22184/2227-572X.2021.11.3.208.217 Рассмотрены свойства керамик на основе нитрида кремния и композитов на основе нитрида и карбида кремния. Отмечена важность создания новых материалов для оболочек тепловыделяющих элементов (ТВЭЛ) вместо циркониевых сплавов, которые могут вступать в реакцию с парами воды, создавая взрывоопасные смеси на основе водорода. Приведен опыт АО «ВНИИНМ» по созданию новых материалов на основе карбида кремния для изготовления оболочек ТВЭЛов и показана возможность использования для этой цели смешанных композитов на основе карбида и нитрида кремния, модифицированного обогащенным изотопом азот-15. Рассмотрены перспективы создания крупномасштабного производства азота-15 для атомной энергетики как компонента смешанного нитридного уран-плутониевого топлива и возможность его использования при изготовлении оболочек ТВЭЛов из SiC / Si3N4 композита.
Наноиндустрия #7-8/2020
А.В.Якухина, Д.В.Горелов, А.С.Кадочкин, С.С.Генералов, В.В.Амеличев, В.В.Светухин
Исследование влияния шероховатости боковых стенок световодного слоя из Si3N4 различной толщины на оптические потери в интегральном волноводе, сформированном на кварцевой подложке
DOI: 10.22184/1993-8578.2020.13.7-8.450.457 В настоящей статье представлены результаты исследования влияния шероховатости боковых стенок световодного слоя из нитрида кремния толщиной 100 и 200 нм на оптические потери в интегральных волноводах шириной 3 и 8 мкм. Представлен расчет основных параметров шероховатости боковых стенок световодного слоя, оказывающих наибольшее влияние на оптические потери в волноводе, проведенный методом конечных временных разностей. На основании данного расчета была установлена оптимальная толщина световодного слоя из нитрида, позволяющая удерживать световой поток. За основу расчета при построении модели были взяты данные, полученные в ходе исследования РЭМ-снимков, изготовленных волноводных структур. Результаты приведенных расчетов согласуются с данными, полученными в результате исследования посредством рефлектометрии в частотной области рефлектометра обратного рассеяния изготовленных волноводов с толщиной световодного слоя из нитрида кремния 200 нм и шириной 3 и 8 мкм.
Разработка: студия
Green Art